# 2008 FALL Semester Midterm Examination For General Chemistry II

*Time Limit:* 7:00 ~ 9:00 p.m.

| Professor<br>Name | Class | Student Number | Name |
|-------------------|-------|----------------|------|
|                   |       |                |      |

| Problem No. | points | Problem No. | points | TOTAL pts |
|-------------|--------|-------------|--------|-----------|
| 1           | /20    | 4           | /20    |           |
| 2           | /22    | 5           | /30    |           |
| 3           | /20    |             |        | /112      |

\*\* This paper consists of 12 sheets with 5 problems. Please check all page numbers before taking the exam.

Please take a good use of the reference materials (pages 10, 11 and 12), which include (a) Fundamental constants, (b) Conversion factors, (c) Atomization and bond energies, (d) Atomic weights of the elements,

and (e) Standard reduction potentials in aqueous solution relative to standard hydrogen electrode. No questions are allowed during the exam. You are not allowed to leave during the exam. You have to hold your nature call. Please write down the unit of your answer when applicable. You will get a deduction for a missing unit.

### NOTICE: SCHEDULES on DISTRIBUTION and CORRECTION of the EXAM PAPER SCORED. (채점답안지 분배 및 정정 일정)

1. Period, and Procedure

1) Distribution and Correction Period: October 27 (Mon), Practice Hours; 7:00 ~ 8:30

2) Procedure: During the practice hours, you can take your mid-term paper scored. If you have any claims on it, you can submit a claim paper with your opinion. After writing your opinions on any paper you can get easily, attach it to your mid-term paper scored (Please, write your name, professor, and class.). Submit them to your TA. The papers with the claims will be re-examined by TA.

### The correction is permitted only on the period. Keep that in mind!

2. Final Confirmation

1) Period: November 3 (Mon)-4 (Tue)

2) Procedure: During this period, you can check final score of the examination on the website again.

\*\* For further information, please visit a General Chemistry website at www.gencheminkaist.pe.kr.

[1] (20 pts)

(a) (8 pts) A thermodynamic engine operates cyclically and reversibly between two temperature reservoirs, absorbing heat from the high-temperature bath at 450 K and discharging heat to the low-temperature bath at 300 K. How much heat is discarded to the low-temperature bath, if 1500 J of heat is absorbed from the high-temperature bath during each cycle?

(Answers)

(a) Efficiency =  $(T_h - T_l)/T_h = 1 - T_h/T_h = 1 - 300K/450K = 0.333$ .

Efficiency = net work done / heat input =  $0.333 = -W_{net}/1500J$ 

 $W_{net} = -500J$ 

Therefore Discarded heat = 1500 J - 500 J = 1000 J

(b) (12 pts) For ideal gases, heat capacity at constant pressure ( $C_p$ ) is always larger than heat capacity at constant volume ( $C_v$ ) ( $C_p > C_v$ ). Using the given equation for the total energy of an ideal gas (E = 3/2 nRT) and equation of state (PV = nRT), probe that  $C_p$  is always larger than  $C_v$ . You have to show the detailed steps arriving at your final answer.

(Answers)

(b) Isochoric process;  $\Delta V = 0$ if gas in a flask is heated  $\rightarrow w = -P \Delta V = 0$   $\therefore \Delta E = (3/2)nR\Delta T = q + w = q_V$  (at constant V) Because  $q = C(T_2 - T_1) \equiv C\Delta T$ , heat capacity  $C_v = 3/2$  nR at constant volume. Isobaric process ( $\Delta P = 0$ )  $\rightarrow$  heat, work are exchangeable  $\Delta E = q + w = q_p - p\Delta V$  $\Delta E + p\Delta V = q_p$ 

 $(E_2 + pV_2) - (E_1 + pV_1) = q_p$ 

The amount of heat measured in such a way is equal to E + PV which is path-independent (state variables).

 $E + pV = H = 3/2 \text{ nRT} + \text{nRT} = 5/2 \text{ nRT}, \quad \Delta H = q_P = C\Delta T$ heat capacity C<sub>p</sub> = 5/2 nR at constant pressure

 $C_p - C_v = nR,$  $\therefore C_p > C_v$ 

## [2] (22 pts)

(a) (10 pts) Choose the substance from each pair with higher absolute entropy  $S^{o}_{298}$ . You will get 2 pt for a correct answer, 0 pt for no answer, and -1 pt for a wrong answer. You don't have to explain the reason for your answer.

| A. $Fe^{3+}(aq)$ , $Fe^{2+}(aq)$                | (Answer) A. Fe <sup>2+</sup> (aq), |
|-------------------------------------------------|------------------------------------|
| B. $NO_2^{-}(aq)$ , $NO_3^{-}(aq)$              | (Answer) B. NO <sub>3</sub> -(aq), |
| C. CH <sub>3</sub> OH(l), CH <sub>3</sub> OH(g) | (Answer) C. CH <sub>3</sub> OH(g), |
| D. $Cl_2O(g)$ , $Cl_2(g)$                       | (Answer) D. $Cl_2O(g)$ ,           |
| E. Na(l), Na(s)                                 | (Answer) E. Na(l)                  |

(b) (6 pts) For the following chemical reactions, guess the sign of  $\Delta H^{\circ}$ . You will get 2 pt for a correct answer, 0 pt for no answer, and **-1 pt for a wrong answer**. You don't have to explain the reason for your answer.

| A. $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$ | (Answer) A. $\Delta H^{\circ} < 0$ , |
|---------------------------------------------|--------------------------------------|
| B. $2CO_2(g) \rightarrow 2CO(g) + O_2(g)$   | (Answer) B. $\Delta H^{\circ} > 0$ , |
| C. $HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$ | (Answer) C. $\Delta H^{\circ} < 0$   |

(c) (6 pts) For the following chemical reactions, guess the sign of  $\Delta S^{\circ}$ . You will get 2 pt for a correct answer, 0 pt for no answer, and **-1 pt for a wrong answer**. You don't have to explain the reason for your answer.

| A. $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$ | (Answer) A. $\Delta S^{\circ} > 0$ , |
|---------------------------------------------|--------------------------------------|
| B. $2CO_2(g) \rightarrow 2CO(g) + O_2(g)$   | (Answer) B. $\Delta S^{\circ} > 0$ , |
| C. $HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$ | (Answer) C. $\Delta S^{\circ} < 0$   |

[3] (20 pts)

(a) (4 pts) When nitrogen dioxide (NO<sub>2</sub>) gas was allowed to dimerize into  $N_2O_4$  gas until the reaction reached equilibrium at 25°C, the total pressure became 1.00 atm. What is the partial pressure of  $N_2O_4$ ? The equilibrium constant K is 6.97 atm<sup>-1</sup>.

(Answers)

(a)  $2NO_2 \implies N_2O_4$   $P_{NO_2} = P - x$  and  $P_{N_2O_4} = x$   $K = x/(P - x)^2 \quad 0 \le x \le 1$   $x^2 - 2.1435 \ x + 1.00 = 0, \ x = 0.686$  $P_{N_2O_4} = 0.686 \ \text{atm}, \ P_{NO_2} = 0.314 \ \text{atm}$ 

(b) (4 pts) Pure water is in equilibrium with its vapor at a given temperature. List the following  $H_2O$ 's in the increasing order of molar Gibbs free energy <u>of  $H_2O$ </u>. Temperature = 298 K, and P = 1 atm.

- A. Water vapor in air with 100% relative humidity.
- B. Pure water.
- C. Water in a mixture of 1 ethanol -1 water (molar ratio)
- D. Water in a mixture of 10 ethanol 1 water (molar ratio).

### (Answers)

(b) D < C < B = A. Water vapor in air at 100%-humidity is in equilibrium with water. They have the same G. H<sub>2</sub>O in the ethanol mixtures has a lower G than its pure state. Remember  $\Delta G = \Delta G_0 + RT$ ln V<sub>0</sub>/V

(c) (4 pts) Calculate the boiling point of water at a high altitude where the atmospheric pressure is 0.5 atm. Assume that the enthalpy of vaporization of water is 10.5 kcal/mol.

### (Answers)

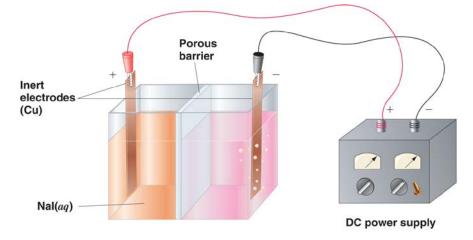
(c) H<sub>2</sub>O(*l*)  $\rightleftharpoons$  H<sub>2</sub>O(*g*), K = P<sub>H2O</sub> Using  $ln \frac{P_2}{P_1} = -\frac{\Delta H^0}{R} (\frac{1}{T_2} - \frac{1}{T_1})$ 

Using 
$$ln \frac{P_1}{P_1} = \frac{R}{R} \left(\frac{T_2}{T_2}\right)$$

 $T = 82.6^{\circ}C$ 

(d) (4 pts) Express the equilibrium constant for the reaction between acetic acid (CH<sub>3</sub>COOH) and ammonia (NH<sub>3</sub>), in terms of  $K_a$  of acetic acid,  $K_b$  of ammonia, and the autoionization constant  $K_w$  of water. You do not have to show the detailed steps arriving at your final answer.

### (Answers)


(d)  $CH_{3}COOH + NH_{3} \iff CH_{3}COO^{-} + NH_{4}^{+}$ Compute the formation in the formation of the forma

(e) (4 pts) Many amine compounds (R-NH<sub>2</sub>) act as a Bronsted-Lowry base in aqueous solution with base ionization constant ( $K_b$ ) of around 10<sup>-4</sup>. However, glycine which has a structure of HOOCCH<sub>2</sub>NH<sub>2</sub> has very small  $K_b$  value around 10<sup>-12</sup> in aqueous solution. Explain why.

(Answers)

(e) In aqueous solution near-neutral pH, most of Glycine exists as a zwitterion as a result of an internal proton transfer. The very small  $K_b$  arises from protonation of the carboxylate anion of the zwitterions, rather than the amine group, which is already protonated.

[4] (20 pts) Consider an electrolytic cell in operation with a NaI solution as electrolyte as in the following figure. A porous barrier was inserted into the initially uniform solution, and a voltage is being applied, plus-terminal to the left-handed electrode.



(a) (5pts) Write down two possible anode reactions (oxidation reactions) (1.5 pts for each correct reaction). In reality, which oxidation reaction occurs more readily (1 pt) and why (1 pt)?

(Answers)

(a)

### Possible anode reactions

The first reaction occurs because it requires less voltage.

(b) (5 pts) Write down two possible cathode reactions (reduction reactions) (1.5 pts for each correct reaction). In reality, which reduction reaction occurs more readily (1 pt) and why (1 pt)?

(Answers)

(b)

### Possible cathode reactions

| Na <sup>+</sup> + e <sup>-</sup> $\rightarrow$ | Na(s)                             | -2.71 V  |
|------------------------------------------------|-----------------------------------|----------|
| $2 H_2O + 2 e^- \rightarrow$                   | 20H <sup>-</sup> + H <sub>2</sub> | -0.828 V |

The second reaction occurs because it requires less voltage

(c) (5 pts) Write down the overall cell reaction (2.5 pts). What is the minimum applied voltage needed to cause this reaction to occur (2.5 pts)?

(Answers)

(c)

# **Overall cell reaction**

 $2 I^{-} + 2 H_2 O \rightarrow I_2 + 2 O H^{-} + H_2 \epsilon^{\circ} = -1.37 V$ 

(d) (5 pts) Suppose a current of 1.0 A is drawn through the NaI cell for a total of 150 seconds. What is deposited at the anode (2 pts) and how many grams (3 pts)?

(Answers)

(d)

```
(4.0A)(150.s)
x(1 mol e<sup>-</sup>/96500 C)
x(1 mol l<sub>2</sub>/ 2 mol e<sup>-</sup>)
X(254g l<sub>2</sub> / 1 mol l<sub>2</sub>) = 0.79 g
```

0.79g of  $I_2$  is deposited.

[5] (30 pts) Classify each of the following statements as 'True' or 'False'. You will get 1.5 pt for a correct answer, 0 pt for no answer, and **-1 pt for a wrong answer**.

(a) The molar heat capacity of argon gas <u>is the same</u> as that of helium gas.(Answer) (a) T

(b) The molar heat capacity of 1 gram of water <u>is smaller than</u> that of 2 grams of water. (Answer) (b) F

(c) A chemical reaction can occur spontaneously even if the entropy change of the reaction is <u>negative</u> under the reaction condition.

(Answer) (c) T

(d) The Gibbs free energy change of a reaction is <u>zero</u> where the reaction is in <u>equilibrium</u>. (Answer) (d) T,

(e) The molar heat capacity of a gas at constant pressure <u>is always larger</u> than that at constant volume.(Answer) (e) T

(f) The entropy change is <u>negative</u> for  $H^+(aq) + OH^-(aq) \rightarrow H_2O(\ell)$  at <u>298 K</u>. (Answer) (f) F

(g) In the Joule's gas expansion, temperature of a gas can actually <u>change</u> if the gas has a significant intermolecular interaction.

(Answer) (g) T

(h) The absolute entropy of <u>liquid helium</u> at 0 K is <u>zero</u>, according to the 3<sup>rd</sup> law of thermodynamics. (Answer) (h) F

(i) The molar heat capacity of  $H_2$  gas  $\underline{is\ larger}$  than that of the helium gas. (Answer) (i) T

(j) The molar heat capacity of  $Cl_2$  gas is larger than that of  $O_2$  gas. (Answer) (j) T

(k) The standard entropy of formation for  $H^+$  in aqueous solution is zero regardless of the temperature. (Answer) (k) F (l) The molar heat capacity of  $H_2$  gas at constant pressure <u>approaches to 9R/2</u> as temperature increases. (Answer) (l) T

(m) Reversible expansion of ideal gas yields a <u>maximum amount of work</u>.(Answer) (m) T

(n) There are Carnot cycles that can work <u>irreversibly</u>.(Answer) (n) F

(o) The standard Gibbs free energy of a species can <u>change</u> if temperature changes.(Answer) (o) T

(p) There are other types of work <u>besides</u> the pressure-volume work. (Answer) (p) T

(q) The molar heat capacity of a <u>monolayer</u> of iron <u>is about 3R</u>.(Answer) (q) F

(r) The molar heat capacity of liquid water <u>is larger</u> than that of steam (gas water).(Answer) (r) T

(s) Electrode potential is an <u>extensive</u> variable.(Answer) (s) F

(t) The pH meter is a type of a concentration electrochemical cell.

(Answer) (t) T

### Answer:

(a) T, (b) F, (c) T, (d) T, (e) T, (f) F, (g) T, (h) F, (i) T, (j) T, (k) F, (l) T, (m) T, (n) F, (o) T, (p) T, (q) F, (r) T, (s) F, (t) T

# 2008 FALL Semester Final Examination For General Chemistry II

*Time Limit:* 7:00 ~ 9:00 p.m.

| Professor<br>Name | Class | Student Number | Name |
|-------------------|-------|----------------|------|
|                   |       |                |      |

| Problem No. | points | Problem No. | points | TOTAL pts |
|-------------|--------|-------------|--------|-----------|
| 1           | /27    | 3           | /27    |           |
| 2           | /28    | 4           | /28    | /110      |

\*\* This paper consists of 10 sheets with 4 problems. Please check all page numbers before taking the exam.

Please take a good use of the reference materials (Page 9 and 10), which include (a) Fundamental constants, (b) Conversion factors, and (c) Atomic weights of the elements. No questions are allowed during the exam. You are not allowed to leave during the exam. You have to hold your nature call. Please write down the unit

of your answer when applicable. You will get a deduction for a missing unit (30% deduction).

## NOTICE: SCHEDULES on DISTRIBUTION and CORRECTION of the EXAM PAPER SCORED. (채점답안지 분배 및 정정 일정)

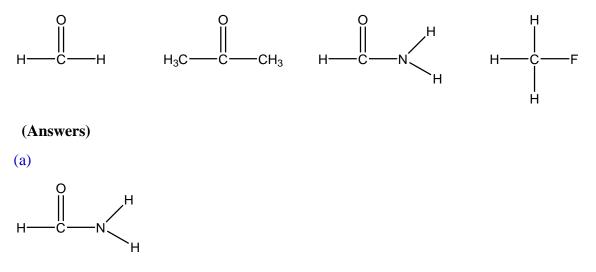
### 1. Period, Procedure, and Location

### 1) Distribution and Correction Period: December 20 (SAT), 10:00 a.m. ~ 13:00 p.m.

2) Procedure: During the period, you can take your final examination paper scored. If you have any claims on it, you can submit a claim paper with your opinion. After writing your opinions on any paper you can get easily, attach it to your paper with a stapler (Please, write your name, professor, and class.). Put them into a paper box in front of elevator. The papers with the claims will be re-examined by TA.

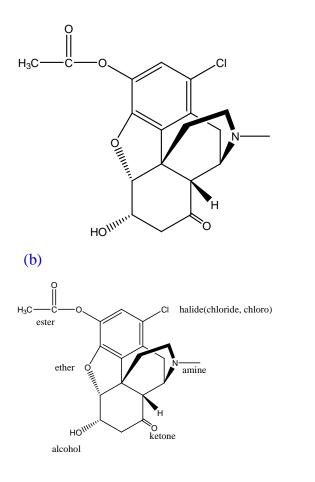
# The correction is permitted only on the period. Keep that in mind! 3) Location: Lobby (1<sup>st</sup> floor), Goong-Ni Laboratory Building

### 2. Final Confirmation

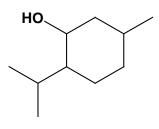

1) Period: December 23(TUE)

2) Procedure: During this period, you can check final score of the examination on the website again.

\*\* For further information, please visit a *General Chemistry website* at <u>www.gencheminkaist.pe.kr</u>.


[1] (27 pts)

(a) (4 pts) Which substance has hydrogen bonding as intermolecular forces?

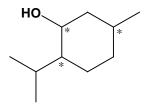



(b) (6 pts) The following organic molecule is morphine, a powerful pain reliever, yet very addictive. It has a pentacyclic structure with several functional groups. Indicate all functional groups and write the name besides each functional group. (1 pt for each correct answer)

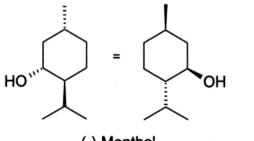
(Answers)



(c) (17 pts) The molecule shown in skeletal representation below is <u>menthol</u>, a crystalline organic compound having local anesthetic and counterirritant properties. What is the formula of menthol (3 pts)? How many chiral centers (asymmetric carbons) does it have (3 pts)? Indicate them on the structure (3 pts). How many stereoisomers are possible (do not count conformational or geometrical isomers) (3 pts)? Draw most stable stereoisomer in a chair form (5 pts).




### (Answers)


(c)

 $C_{10}H_{20}O$ 

3 chiral centers. 8 isomers.



Most stable isomer is:



(-)-Menthol

HC Chair form of

(-)-Menthol

[2] (28 pts)

(a) (2 pts) Which element among the 3d transition metals can have the oxidation state of 1+.

### (Answers)

Cu

(b) (4 pts) Among compounds of the early transition elements,  $KMnO_4$  shows a very intense color in solution. What is the reason?

## (Answers)

It is because of the charge-transfer electronic transition from an oxygen-like orbital to a metal-like orbital.

(c) (22 pts)The octahedral complex  $[CoCl_2(en)_2]Cl$  is a low spin complex.

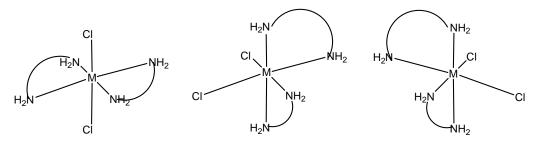
1) (4 pts) Name this compound.

(Answers) Dichlorobis(ethylenediamine) Cobalt (III) chloride

2) (4 pts) What is the oxidation state of the cobalt?

(Answers) oxidation state = +3

3) (4 pts) If the crystal field energy splitting is 1 kcal/mol, what is the crystal field stabilization energy (CFSE) of this complex?


(Answers) CFSE = - 12/5 kcal/mol

4) (4 pts) Is the complex paramagnetic or diamagnetic?

(Answers) Diamagnetic

5) (6 pts) Draw all possible isomers of the complex.

(Answers) three isomers



### [3] (27 pts)

(a) (3 pts) We have learned the *half-life* or *half-reaction time*  $t_{1/2}$ . Its definition is the time needed for half of the reactant molecules to disappear. Now, instead of half-reaction time, let us define a new term called *lifetime*  $\tau$ . The definition of *lifetime* is the time at which the reactant concentration falls to 1/e of its initial value. Express the concentration of the reactant as a function of initial concentration ( $c_0$ ) and lifetime ( $\tau$ ) for a first-order reaction.

### (Answers)

(a)  $\tau = 1/k$ . Therefore  $c(t) = c_0 exp(-kt) = c_0 exp(-t/\tau)$ 

(b) (5 pts) Assuming that the boat  $\rightarrow$  chair conversion in cyclohexane vapor has a preexponential factor of  $1.0 \times 10^{13}$  s<sup>-1</sup> and an activation energy of 10.1 kcal/mol, estimate the <u>lifetime</u> for unimolecular conversion at 25 °C. (2 pts for the correct concept and 3 pts for the correct final answer)

#### (Answers)

(b)

$$k = \frac{1.0 \times 10^{13}}{\text{s}} \exp\left(\frac{-10.1 \text{ kcal/mol}}{0.0019872 \text{ kcal/K mol}(298.15 \text{ K})}\right) = 3.95 \times 10^5 \text{/s}.$$
  
$$\tau = 1/\text{k} = 2.53 \times 10^{-6} \text{ s}.$$

(c) (19 pts) An interesting and important method in solution kinetics employs so-called clock reactions, in which a fast but noninterfering reaction is used to scavenge a product of a slower reaction to be studied. One of the earliest known applications of this method was in the study of the oxidation of iodide ( $\Gamma$ ) by peroxydisulfate ion (S<sub>2</sub>O<sub>8</sub><sup>2-</sup>)

$$2\mathbf{I}^{-} + \mathbf{S}_2 \mathbf{O}_8^{2-} \longrightarrow \mathbf{I}_2 + 2\mathbf{SO}_4^{2-}$$

A comparatively slow reaction, whose rate is clocked by the fast reduction of  $I_2$  by thiosulfate ion  $(S_2O_3^{2-})$ 

$$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$$

Using a small amount of thiosulfate, and starch indicator to detect the presence of  $I_2$  by formation of a blue complex, the solution will remain clear until the thiosulfate has completely reacted, then "flash" blue as the excess  $I_2$  complexes with starch. (Without the clocking reaction, the blue color

| Run | [ <b>I</b> <sup>-</sup> ] <sub>0</sub> ( <b>M</b> ) | $[S_2O_8^2]_0$ (M) | $[S_2O_3^{2^-}]_0$ (M) | t to blue flash (s) |
|-----|-----------------------------------------------------|--------------------|------------------------|---------------------|
| Ι   | 0.080                                               | 0.040              | 0.0010                 | 38                  |
| II  | 0.060                                               | 0.040              | 0.0010                 | 52                  |
| III | 0.080                                               | 0.025              | 0.0010                 | 61                  |
| IV  | 0.020                                               | 0.0010             | 0.0005                 | ???                 |

would gradually deepen as the slow oxidation progressed.) Clock reactions are most useful for measuring initial rates. A student obtained the following initial rate data for this reaction:

Use these data to find the rate law (6 pts) and calculate the rate constant for the reaction (6 pts).

Make a numerical prediction of the flash time for run IV (7 pts).

#### (Answers)

The time data are for the appearance of the blue color, the point at which all of the thiosulfate ions are gone. The rate data are based on the reaction  $l_2 + 2S_2O_3^{2^-} \rightarrow 2l^- + S_4O_6^{2^-}$ , for which

$$S_2O_3^{2-}$$
 reaction rate =  $-\frac{1}{2}\frac{d[S_2O_3^{2-}]}{dt}$ 

This is a *fast* reaction that merely times the slow  $S_2O_8^{2^-}$  reaction, and correspondingly, the thiosulfate ion will not appear in the slow  $S_2O_8^{2^-}$  reaction rate equation. For run I  $d[S_2O_3^{2^-}]/dt = 0.0010 \text{ M/38 s} = 2.63 \times 10^{-5} \text{ M/s}$ . Likewise, runs II and III give  $d[S_2O_3^{2^-}]/dt = 1.92 \times 10^{-5} \text{ M/s}$  and  $1.64 \times 10^{-5} \text{ M/s}$ , respectively. Now, the key step is to make the approximation that the thiosulfate reaction is occurring very nearly simultaneously with the

peroxydisulfate reaction, since  $S_2O_3^{2^-}$  scavenges  $I_2$  as quickly as it is formed. Assuming this, the time data that we have apply to *both* reactions, meaning that the rate of the thiosulfate reaction, obtained from the given time data, will be equal to the rate of the peroxydisulfate reaction. From the above  $S_2O_3^{2^-}$  reaction rate equation the  $S_2O_3^{2^-}$  reaction rates are  $1.32 \times 10^{-5}$  M/s,  $9.60 \times 10^{-6}$  M/s, and  $8.20 \times 10^{-6}$  M/s for the three runs.

Now, assuming that the rate law for the slow reaction is of the form  $S_2O_8^{2-}$  reaction rate =  $k[\Gamma]^p[S_2O_8^{2-}]^q$ , the method of initial rates can be used. For p

$$\frac{\text{rate I}}{\text{rate II}} = \frac{[I^-]_I^p}{[I^-]_{II}^p} \implies \frac{1.32 \times 10^{-5} \text{ M/s}}{9.60 \times 10^{-6} \text{ M/s}} = \left(\frac{0.080 \text{ M}}{0.060 \text{ M}}\right)^p$$

Since  $\ln x^p = p \ln x$ ,  $p = 1.10 \approx 1$ . Likewise for runs I and III,  $q = 1.01 \approx 1$ . Thus,  $S_2O_8^{2^-}$  reaction rate =  $k[1^-][S_2O_8^{2^-}]$ . To obtain the rate constant, we substitute in the values for a run and solve the rate expression for k. For run I this gives  $k = (1.32 \times 10^{-5} \text{ M/s})/[0.08][0.04] = 4.13 \times 10^{-3} \text{ L/mol s}$ . Runs II and III give  $k = 4.00 \times 10^{-3} \text{ L/mol s}$  and  $4.10 \times 10^{-3} \text{ L/mol s}$ , respectively. The average of these three is  $k = 4.08 \times 10^{-3} \text{ L/mol s}$ .

To determine the time for run IV, we calculate its initial rate. The rate of the thiosulfate reaction is given by

$$S_2O_3^{2-}$$
 reaction rate =  $\frac{4.08 \times 10^{-3} L}{\text{mol s}} \left(\frac{0.020 \text{ mol}}{L}\right) \left(\frac{0.010 \text{ mol}}{L}\right) = \frac{8.2 \times 10^{-7} \text{ mol}}{L \text{ s}}$ 

Now, from the above  $S_2O_3^{2^-}$  reaction rate, the rate at which the thiosulfate ion disappears will be twice this rate, giving  $-d[S_2O_3^{2^-}]/dt = 1.64 \times 10^{-6} \text{ mol/L s. Finally, since } [S_2O_3^{2^-}]_0 = 0.0005 \text{ M}$ , the time until the blue color flashes is 0.0005 M/(1.64 × 10^{-6}) mol/L s = 305 seconds.

Rate law (6pts): rate =  $k[I^{-}][S_2O_8^{2^-}]$ Rate constant (6pts):  $k = 4.08 \times 10^{-3} \text{ L/mol-s}$ 

Flash time (7 pts): 3050 s

| Species              | $\Delta {H}^{\circ}_{f f}$ | $\Delta G^{\circ}_{f f}$ | S°            | $\overline{C}_{p}$ |
|----------------------|----------------------------|--------------------------|---------------|--------------------|
| 1                    | (kcal/mol)                 | (kcal/mol)               | (cal/(K·mol)) | (cal/(K·mol))      |
| B(s)                 | 0.0                        | 0.0                      | 1.40          | 2.65               |
| B(g)                 | 134.5                      | 124.0                    | 36.65         | 4.971              |
| BCl <sub>2</sub> (l) | -102.1                     | -92.6                    | 49.3          | 25.5               |
| BCl <sub>3</sub> (g) | -96.50                     | -92.91                   | 69.31         | 14.99              |
| $BBr_{a}(l)$         | -57.3                      | -57.0                    | 54.9          | 30.6               |
| BBr <sub>2</sub> (g) | -49.15                     | -55.56                   | 77.47         | 16.20              |

[4] (28 pts) Consider the following selected values of thermodynamic properties at 298.15 K and 1 atm. Please answer to the following questions by using the information in the given table.

(a) (2 pts) For boron, what kind of turnaround temperature can be calculated from the table?

#### (Answers)

(a) Since the information for B(s) and B(g) are given, the sublimation temperature can be calculated.

(b) (7 pts) The potential energies between molecules in liquids and solids have an inverse-power dependence on the intermolecular distance R, that is  $V(R) \propto 1/R^s$ . What types of intermolecular interactions are present for BCl<sub>3</sub> and BBr<sub>3</sub> (2 pts)? Indicate the s value for each interaction (2 pts). Among these intermolecular forces, which are always attractive (1 pt)? Which molecules would have higher boiling temperature and why (2 pts)?

#### (Answers)

(b) instantaneous dipole-induced dipole interaction (Dispersion or London-Dispersion) (s = 6) and dipole-dipole interaction (s = 3). London-Dispersion force is always attractive. BBr<sub>3</sub> would have higher boiling point due to higher LD force. The higher LD force is due to higher polarizability of Br compared with Cl due to higher number of electrons.

(c) (6 pts) Calculate the boiling temperatures of  $BCl_3$  and  $BBr_3$  (3 pts for each, 1 pt for the correct concept and 2 pts for the correct final answer). Show your answer in °C.

### (Answers)

(c)  $T_b = \Delta H_{vap} / \Delta S$ .

### For BCl<sub>3</sub>,

 $T_{b} = \frac{(-96.50 - (-102.1))kcal / mol}{(69.31 - 49.3)cal / (K \cdot mol)}$  $= 279.86K = 6.7^{\circ}C$ 

### For BBr<sub>3</sub>,

 $T_{b} = \frac{(-49.15 - (-57.3))kcal / mol}{(77.47 - 54.9)cal / (K \cdot mol)}$  $= 361.1K = 87.9^{\circ}C$ 

(d) (7 pts) Calculate the amount of heat needed to raise the temperature of 1 mol BCl<sub>3</sub> from 0°C to 50 °C. Show your answer in cal. (4 pts for the correct concept and 3 pts for the correct final answer) (Answers)

(d) In three steps: 1) from 0 °C to 6.7 °C, 2) boiling at 6.7 °C, and 3) 6.7 °C to 50 °C.

Total heat =  $n\overline{C}_p(l)(T_b - T_1) + n\Delta H_{vap}^o + n\overline{C}_p(g)(T_2 - T_b)$ 

= (1.00 mol)(25.5 cal/K mol)(6.7 - 0)K + (1.00 mol)(5600 cal/mol) + (1.00 mol)(14.99 cal/K)(50 - 6.7)K = 6420 cal

(e) (6 pts) Estimate the equilibrium vapor pressure of  $BBr_3$  at 25°C. Show your answer in Torr. (3 pts for the correct concept and 3 pts for the correct final answer)

#### (Answers)

(e) From the table,  $\Delta G_{vap,298}^{o} = (-55.56 - (-57.0))$  kcal/mol = 1.44 kcal/mol.

At equilibrium,  $\Delta G_{vap} = \Delta G_{vap}^{o} + RT \ln P_{vap} = G(g) - G(l) = 0.$ 

 $P_{eq} = \exp(-\Delta G_{vap}^{o}/RT) = \exp(-1440/(1.987 \times 298.15)) = 0.088 \text{ atm} = 67 \text{ Torr.}$ 

#### Fundamental constants

| Constant               | Symbol | Value (SI units)                                         | cgs-esu or other units                                                  |
|------------------------|--------|----------------------------------------------------------|-------------------------------------------------------------------------|
| Gas constant           | R      | 8.31447 J K <sup>-1</sup> mol <sup>-1</sup>              | $8.31447 \times 10^7  \mathrm{erg}  \mathrm{K}^{-1}  \mathrm{mol}^{-1}$ |
|                        |        | $8.31447 \text{ m}^3 \text{ Pa K}^{-1} \text{ mol}^{-1}$ | $0.0820575 \text{ L atm K}^{-1} \text{ mol}^{-1}$                       |
|                        |        |                                                          | 1.98721 cal K <sup>-1</sup> mol <sup>-1</sup>                           |
| Avogadro's number      | NA     | $6.02214 \times 10^{23} \text{ mol}^{-1}$                | $6.02214 	imes 10^{23} \text{ mol}^{-1}$                                |
|                        |        |                                                          | $6.02214 	imes 10^{23} 	ext{ amu g}^{-1}$                               |
| Faraday constant       | F      | 96485.3 C mol <sup>-1</sup>                              | 23.06055 kcal V <sup>-1</sup> mol <sup>-1</sup>                         |
| Churga D               |        | 96.4853 kJ V <sup>-1</sup> mol <sup>-1</sup>             |                                                                         |
| Speed of light         | С      | $2.99792458 	imes 10^8 \text{ m s}^{-1}$                 | $2.99792458 \times 10^{10} \ \rm cm \ s^{-1}$                           |
| Planck's constant      | h      | $6.62607 	imes 10^{-34}  \mathrm{J \ s}$                 | $6.62607 	imes 10^{-27}  m erg s$                                       |
| Boltzmann's constant   | kB     | $1.38065 \times 10^{-23}  \mathrm{J  K^{-1}}$            | $1.38065 \times 10^{-16}  \rm erg \ K^{-1}$                             |
| Electronic charge      | е      | $1.602176 \times 10^{-19} \text{ C}$                     | $4.803204 \times 10^{-10}$ esu (statC)                                  |
| Coulomb's law constant | k      | $8.98755 \times 10^9 \text{ J m C}^{-2}$                 | 1 erg cm esu <sup>-2</sup>                                              |
| Electron mass          | me     | $9.10938 	imes 10^{-31}  \mathrm{kg}$                    | $9.10938 	imes 10^{-28} { m g}$                                         |
|                        |        |                                                          | 0.0005485799 amu                                                        |

#### **Conversion factors**

Energy into joules (J) 4.184 J/cal  $1.602 \times 10^{-19}$  J/eV 101.325 J/(L atm)  $10^{-7}$  J/erg  $1.986 \times 10^{-23}$  J/cm<sup>-1</sup> Length into meters (m)  $10^{-10}$  m/Å 0.0254 m/in. 0.3048 m/ft 1609.3 m/mi Volume into cubic meters (m<sup>3</sup>)  $10^{-3}$  m<sup>3</sup>/L  $3.7854 \times 10^{-3}$  m<sup>3</sup>/gal Pressure into Pascals (Pa) 101,325 Pa/atm  $10^5$  Pa/bar 133.3 Pa/torr 6895 Pa/(Ib in.<sup>-2</sup>) Mass into kilograms (kg) 0.4536 kg/lb  $1.66054 \times 10^{-27}$ kg/amu

#### Atomic weights of the elements 2001 http://www.chem.qmul.ac.uk/iupac/AtWt/

| Ζ  | Symbol | Name       | Atomic Wt     | Ζ  | Symbol | Name         | Atomic Wt    |
|----|--------|------------|---------------|----|--------|--------------|--------------|
| 1  | Н      | Hydrogen   | 1.00794(7)    | 44 | Ru     | Ruthenium    | 101.07(2)    |
| 2  | He     | Helium     | 4.002602(2)   | 45 | Rh     | Rhodium      | 102.90550(2) |
| 3  | Li     | Lithium    | [6.941(2)]    | 46 | Pd     | Palladium    | 106.42(1)    |
| 4  | Be     | Beryllium  | 9.012182(3)   | 47 | Ag     | Silver       | 107.8682(2)  |
| 5  | В      | Boron      | 10.811(7)     | 48 | Cd     | Cadmium      | 112.411(8)   |
| 6  | С      | Carbon     | 12.0107(8)    | 49 | In     | Indium       | 114.818(3)   |
| 7  | N      | Nitrogen   | 14.0067(2)    | 50 | Sn     | Tin          | 118.710(7)   |
| 8  | 0      | Oxygen     | 15.9994(3)    | 51 | Sb     | Antimony     | 121.760(1)   |
| 9  | F      | Fluorine   | 18.9984032(5) | 52 | Те     | Tellurium    | 127.60(3)    |
| 0  | Ne     | Neon       | 20.1797(6)    | 53 | Ι      | Iodine       | 126.90447(3  |
| 1  | Na     | Sodium     | 22.989770(2)  | 54 | Xe     | Xenon        | 131.293(6)   |
| 2  | Mg     | Magnesium  | 24.3050(6)    | 55 | Cs     | Cesium       | 132.90545(2  |
| 3  | Al     | Aluminum   | 26.981538(2)  | 56 | Ba     | Barium       | 137.327(7)   |
| 4  | Si     | Silicon    | 28.0855(3)    | 57 | La     | Lanthanum    | 138.9055(2)  |
| 5  | Р      | Phosphorus | 30.973761(2)  | 58 | Ce     | Cerium       | 140.116(1)   |
| 6  | S      | Sulfur     | 32.065(5)     | 59 | Pr     | Praseodymium | 140.90765(2  |
| 7  | Cl     | Chlorine   | 35.453(2)     | 60 | Nd     | Neodymium    | 144.24(3)    |
| 8  | Ar     | Argon      | 39.948(1)     | 61 | Pm     | Promethium   | [145]        |
| 9  | К      | Potassium  | 39.0983(1)    | 62 | Sm     | Samarium     | 150.36(3)    |
| 20 | Ca     | Calcium    | 40.078(4)     | 63 | Eu     | Europium     | 151.964(1)   |
| 21 | Sc     | Scandium   | 44.955910(8)  | 64 | Gd     | Gadolinum    | 157.25(3)    |
| 22 | Ti     | Titanium   | 47.867(1)     | 65 | Tb     | Terbium      | 158.92534(2  |
| 23 | v      | Vanadium   | 50.9415(1)    | 66 | Dy     | Dysprosium   | 162.500(1)   |
| 24 | Cr     | Chromium   | 51.9961(6)    | 67 | Ho     | Holmium      | 164.93032(2  |
| 25 | Mn     | Manganese  | 54.938049(9)  | 68 | Er     | Erbium       | 167.259(3)   |
| 26 | Fe     | Iron       | 55.845(2)     | 69 | Tm     | Thulium      | 168.93421(2  |
| 27 | Co     | Cobalt     | 58.933200(9)  | 70 | Yb     | Ytterbium    | 173.04(3)    |
| 28 | Ni     | Nickel     | 58.6934(2)    | 71 | Lu     | Lutetium     | 174.967(1)   |
| 29 | Cu     | Copper     | 63.546(3)     | 72 | Hf     | Hafnium      | 178.49(2)    |
| 30 | Zn     | Zinc       | 65.409(4)     | 73 | Ta     | Tantalum     | 180.9479(1)  |
| 31 | Ga     | Gallium    | 69.723(1)     | 74 | W      | Tungsten     | 183.84(1)    |
| 32 | Ge     | Germanium  | 72.64(1)      | 75 | Re     | Rhenium      | 186.207(1)   |
| 33 | As     | Arsenic    | 74.92160(2)   | 76 | Os     | Osmium       | 190.23(3)    |
| 34 | Se     | Selenium   | 78.96(3)      | 77 | Ir     | Iridium      | 192.217(3)   |
| 35 | Br     | Bromine    | 79.904(1)     | 78 | Pt     | Platinum     | 195.078(2)   |
| 36 | Kr     | Krypton    | 83.798(2)     | 79 | Au     | Gold         | 196.96655(2  |
| 37 | Rb     | Rubidium   | 85.4678(3)    | 80 | Hg     | Mercury      | 200.59(2)    |
| 38 | Sr     | Strontium  | 87.62(1)      | 81 | TI -   | Thallium     | 204.3833(2)  |
| 39 | Y      | Yttrium    | 88.90585(2)   | 82 | Pb     | Lead         | 207.2(1)     |
| 40 | Zr     | Zirconium  | 91.224(2)     | 83 | Bi     | Bismuth      | 208.98038(2  |
| 41 | Nb     | Niobium    | 92.90638(2)   | 90 | Th     | Thorium      | 232.0381(1)  |
| 42 | Mo     | Molybdenum | 95.94(2)      | 91 | Pa     | Protactinium | 231.03588(2  |
| 43 | Te     | Technetium | [98]          | 92 | U      | Uranium      | 238.02891(3  |

Source: IUPAC Commission on Atomic Weights and Isotopic Abundances. Values from the 2001 table, Pure Appl. Chem. 75, 1107 (2003). Numbers in parenthesis are uncertainties in least significant digit. For Li, terrestrial sample variations prevent a more precise value. For Tc and Pm, no stable isotopes exist.