2013 Fall Semester Midterm Examination CH101 General Chemistry I

Date: October 23 (Wednesday), 2013

Time Limit: 7:00 ~ 9:00 p.m.

Write down your information neatly in the space provided below; print your Student ID in the upper right corner of every page.

Professor Name	Class	Student I.D.	Student Name

Problem	points	Problem	points	TOTAL pts
1	/8	6	/6	
2	/16	7	/10	/100
3	/10	8	/12	
4	/6	9	/12	
5	/10	10	/10	

** This paper consists of 10 sheets with 10 problems. Please check all page numbers before taking the exam.

Write down your work and answers in the Answer sheet.

Include the *unit (e.g. kJ/mol)* of your answer when applicable. You will get 30% deduction for a missing unit.

NOTICE: SCHEDULES on RETURN and CLAIM of the MARKED EXAM PAPER.

(채점답안지 분배 및 이의신청 일정)

- 1. Period, Location and Procedure
- (i) Return and Claim Period: October 28 (Mon), 6: 30 ~ 7:30 p.m.
- (ii) Location: Room for quiz session
- (iii) Procedure:

Rule 1: Students cannot bring their own writing tools into the room. (Use a pen only provided by TA) Rule 2: With or without claim, you must submit the paper back to TA. (Do not go out of the room with it)

If you have any claims on it, you can submit the claim paper with your opinion. After

writing your opinions on the claim form, attach it to your mid-term paper with a

stapler. Give them to TA. A solution file will be uploaded on 10/27(Sun).

- 2. Final Confirmation
 - (i) Period: October 31 (Thu)-November 1 (Fri)

(ii) Procedure: During this period, you can check final score of the examination *on the website* again.

** For further information, please visit a *General Chemistry website* at <u>www.gencheminkaist.pe.kr</u>.

1. (a) Calculate the maximum wavelength of light needed to eject electrons from the surface of cesium, if light of wavelength 400 nm strikes the surface of the metal giving photoelectrons whose maximum kinetic energy is 1.54×10^{-19} J. (4 points)

(b) During an experiment, the maximum kinetic energy of ejected photoelectrons from the surface of cesium was found to be 11.4 eV. Determine the de Broglie wavelength of an electron with this energy. (4 points)

an electron with this energy. (4 points) [Planck's constant h = 6.63×10^{-34} J s; velocity of c = 3.00×10^8 m/s; electron mass m_e = 9.11×10^{-31} kg; $1eV = 1.60 \times 10^{-19}$ J]

(a) Using the Einstein equation,

$$hv = \Phi + 1/2mv_{max}^{2}$$
or
$$\frac{hc}{\lambda} = \frac{hc}{\lambda_{0}} + KE_{max} \text{ where } \lambda_{0} \text{ is the maximum wavelength}}{\text{ of light needed to eject electrons}}$$
from the surface of cesium
$$(6.63 \times 10^{-34} \text{ J s})(3.00 \times 10^{8} \text{ m/s}) = (6.63 \times 10^{-34} \text{ J s})(3.00 \times 10^{8} \text{ m/s}) + 1.54 \times 10^{-19} \text{ J}$$

$$3.43 \times 10^{-19} \text{ J} = (6.63 \times 10^{-34} \text{ J s})(3.00 \times 10^{8} \text{ m/s})$$

$$\lambda_{0} = \frac{5.80 \times 10^{-7} \text{ m or 580}}{\lambda_{0}} \text{ nm} \quad (4 \text{ points})$$
Allow partial points or alternative correct working
(b) Using the de Brolie matter wave equation,

$$\lambda = \frac{h}{m_{e}v} = \sqrt{\frac{h}{\sqrt{2m_{e}KE_{max}}} KE_{max} \text{ is maximum kinetic energy}$$

$$= \frac{(6.63 \times 10^{-34} \text{ J s})}{\sqrt{2(9.11 \times 10^{-31} \text{ kg})(11.4 \text{ eV} \times 1.60 \times 10^{-19} \text{ J/eV})}$$

$$= 3.64 \times 10^{-10} \text{ m or } 3.64 \text{ Å or } 0.364 \text{ nm}}$$
Allow partial points
(4 points)
(4 points)

2. (a) The energy of a particle, such as an electron, confined to a one-dimensional box of length L, such that its potential energy is 0 for x = 0-L and ∞ for all other values of x, is given by

$$\mathsf{E}_{\mathsf{n}} = \frac{\mathsf{h}^2}{\mathsf{8m}_{\mathsf{e}}} \frac{\mathsf{n}^2}{\mathsf{L}^2}$$

Calculate the energy difference in kJ/mol between the ground state and first excited state for an electron,

(i) in a 1.0 Å box, and

(ii) in a 1.0 m box (total 6 points for (i) and (ii)).

(iii) Comment on the result. (2 points)

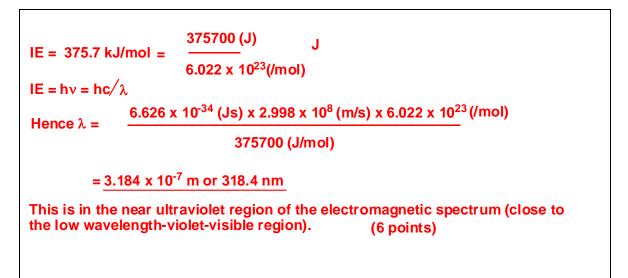
[Electron mass $m_e = 9.110 \times 10^{-31}$ kg; Planck's constant $h = 6.626 \times 10^{-34}$ Js; Avogradro's number is 6.022×10^{23} /mol; $1 \text{ Å} = 10^{-10}$ m]

(b) Write an equation for the energy of an electron confined to a 3-dimensional cubic box of length L, under the conditions described above. (2 points)

(c) Write an equation for the ground state energy level. (2 points)

(d) Write an equation for one of the first excited state energy levels. (2 points)

(e) State how many first excited energy levels exist and state whether or not they are degenerate (of equal energy). (2 points)


(a) (i) $E_2 - E_1 = \frac{3h^2}{8m_eL^2} = \frac{3(6.626 \times 10^{-34} \text{ Js})^2}{8(9.11 \times 10^{-31} \text{ kg})(1.0 \times 10^{-10} \text{ m})^2} = 1.8 \times 10^{-17} \text{ J}$ $= \frac{(1.8 \times 10^{-17} \text{ J}) \times (6.022 \times 10^{23} / \text{mol})}{10^3 (\text{J/kJ})} = \frac{11,000 \text{ kJ/mol}}{1000 \text{ kJ/mol}}$ (ii) Same calculation as above, but $L^2 = 1.0 \text{ m}^2$, so $E_2 - E_1 = 1.8 \times 10^{-37} \text{ J}$ $= 1.1 \times 10^{-16} \text{ kJ/mol}$ (6 points for (i) and (ii) combined) (iii) In (i) the electron is confined in a box of atomic dimensions and therefore quantization of energy levels is clear, whereas in (ii), the electron is confined in a very much larger box, is almost classical in its behavior and the energy levels are almost continuous. (2 points) (b) $E_{n_1n_2n_3} = \frac{h^2}{8m_eL^2} (n_1^2 + n_2^2 + n_3^2)$ (2 points) (c) $E_{111} = \frac{3h^2}{8m_eL^2} (n_1 = n_2 = n_3 = 1)$ (2 points) (d) $E_{211} = \frac{3h^2}{4m_eL^2} (n_1 = 2; n_2 = n_3 = 1)$ (for example; there is also E_{121} and E_{112}) (e) There are 3 energy levels and they are degenerate. (2 points) **3.** Give the value of quantum numbers (n, l, and m) and the number of radial nodes and angular nodes for each of the following hydrogen atomic orbitals in the table. (5 x 2 points)

Orbital	n		m	No. of radial nodes	No. of angular nodes
2s	2	0	0	1	0
2p _y	2	1	±1	0	1
4s	4	0	0	3	0
5p _x	5	1	±1	3	1
$4d_{z2}$	4	2	0	1	2

2 points for completely correct entries for each orbital, otherwise zero.

4. The cesium atom has one of the lowest ionization energies of all neutral atoms in the periodic table (375.5 kJ/mol). Calculate the longest wavelength of light that could ionize a cesium atom (in the gas phase) and state the region of the electromagnetic spectrum to which this light belongs. (6 points)

[Planck's constant h = 6.626×10^{-34} Js; Avogradro's number is 6.022×10^{23} /mol; velocity of light c = 2.998×10^8 m/s]

5. (a) Using the standard notation, write ground state electronic configurations for the following species and describe each one as diamagnetic or paramagnetic. (i) Li^- (ii) S^- (iii) Br^+ (iv) Te^{2-} (v) Xe^+ (2.5 points)

(b) For each of the following pairs of atoms or ions, state which you expect to have the larger radius. No explanation is needed.
(i) Ge or As (ii) Sm and Sm³⁺ (iii) Rb⁺ or Kr (iv) Sr⁺ or Rb (v) I⁻ or Xe (2.5 points)

(c) (i) Arrange the following in order of their first ionization energies: Li, Be, B.

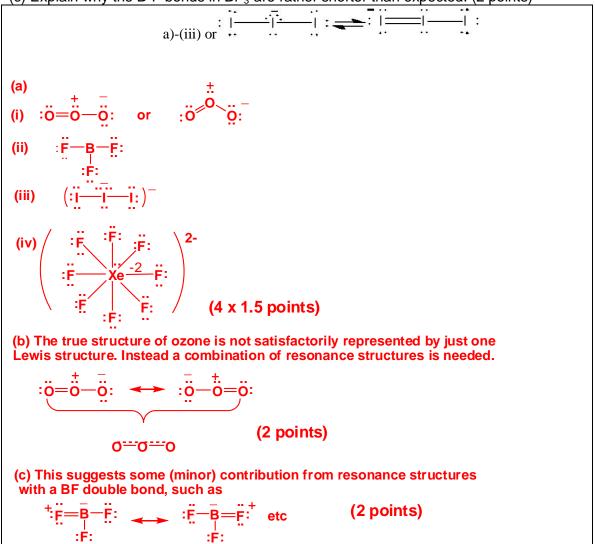
No explanation is needed.

(ii) Explain briefly which of the following atoms has the smallest radius: Si, S, Mg.

(3 points)

(2 points)

(a) (i) Li⁻: 1s²2s² diamagnetic (ii) S⁻: 1s²2s²2p⁶3s²3p⁵ or [Ne]3s²3p⁵ paramagnetic (iii) Br⁺: [Ar]3d¹⁰4s²4p⁴ paramagnetic (iv) Te²⁻: [Kr]4d¹⁰5s²5p⁶ diamagnetic (v) Xe⁺: [Kr] 4d¹⁰5s²5p⁵ paramagnetic. (2.5 points)
(b) (i) Ge (ii) Sm (iii) Kr (iv) Rb (v) I⁻ (2.5 points)
(c) (i) Be > B > Li (2 points)
(ii) S, because all three elements are in period (row) 3, but S has highest Z and radius decreases with increase in Z across a period. (3 points)

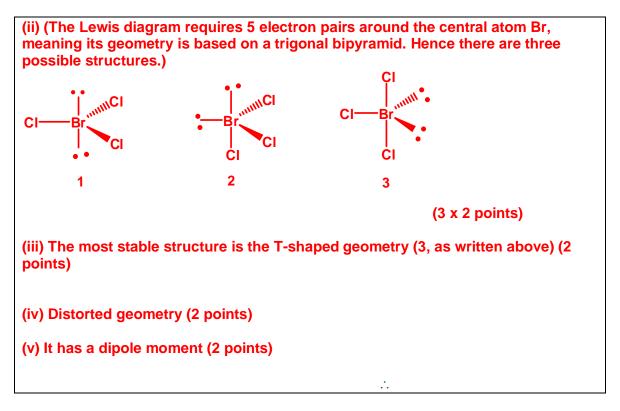

6. (a) Write the equation that defines the lattice energy of calcium oxide. (2 points) (b) Predict which of the following pairs of ions would have the greater coulombic attraction in a solid compound: (i) K^+ , O^{2^-} (ii) Ga^{3+} , O^{2^-} (iii) Ca^{2+} , O^{2-} (2 points) (c) Predict which of LiCl(s) or RbCl(s) would have the higher lattice energy, given that they have similar arrangements of ions in the crystal lattice. (2 points)

(a) CaO(s) (or Ca²⁺O²⁻(s)) \rightarrow Ca²⁺(g) + O²⁻(g) (2 points) (b) (ii) Ga³⁺, O²⁻ (2 points) (c) LiCl(s) (2 points) **7.** (a) Draw one Lewis structure for each of the following, showing all valence electron pairs and all nonzero formal charges.

(i) Ozone (O₃) (ii) Boron trifluoride (BF₃) (iii) Triiodide ion (I₃⁻) (iv) Xenon octafluoride dianion (XeF₈²⁻). (4 x 1.5 = 6 points)

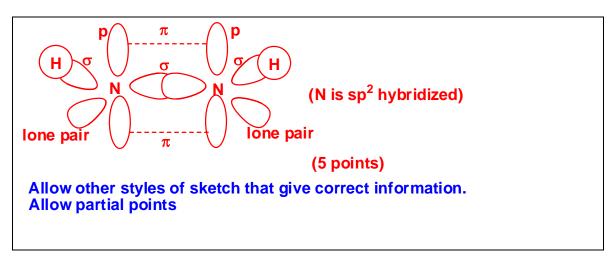
(b) Explain why the observed structure of ozone has O-O bonds that are both identical and intermediate in length between O-O and O=O. (2 points)

(c) Explain why the B-F bonds in BF_3 are rather shorter than expected. (2 points)

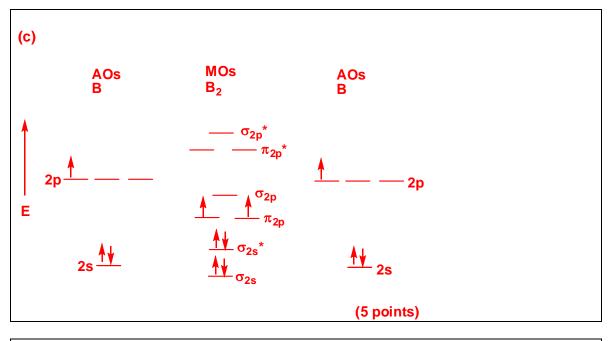

8. Consider the molecule bromine trichloride ($BrCI_3$) and answer the following questions.

(a) Draw the three possible structures of BrCl₃, according to the VSEPR model. (6 points)

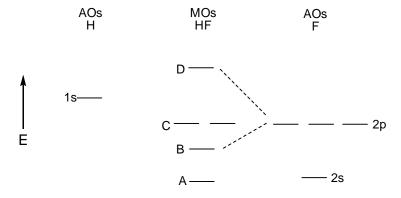
(b) Select the most stable structure. (2 points)


(c) State whether the geometry of the most stable structure is regular or distorted. (2 points)

(d) State whether the most stable structure has a dipole moment. (2 points)


9. (a) Sketch a valence bond (VB) model of the *cis* stereoisomer of diazene (HNNH), showing the hybridization on the N atoms, the σ skeletal structure, lone pair electrons and π -bonding. (5 points)

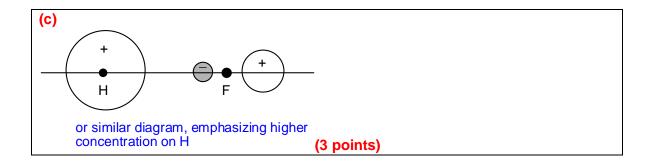
(b) State whether *cis*-diazene has a molecular dipole moment. (1 point)


(b) It has a dipole moment (1 point)

(c) Sketch a molecular orbital energy diagram (showing all relevant atomic and molecular orbitals) for the homonuclear diatomic molecule B₂. (5 points)
(d) Determine, from its electronic structure, whether B₂ is paramagnetic or diamagnetic. (1 point)

(d) B₂ is paramagnetic (1 point)

10. Consider the LCAOMO diagram for HF below and answer the following questions.



(a) Label the MOs of HF. (4 points)

(a) $A = \sigma_{2s}$, $B = \sigma_{2p}$, $C = n_{2p}$, $D = \sigma^{*}_{2p}$ (4 points)

(b) Write the electron configuration of HF and determine the highest (energy) occupied MO (HOMO) and the lowest (energy) unoccupied MO (LUMO). (3 points)

(b) $(\sigma_{2s})^2 (\sigma_{2p})^2 (n_{2p})^4 (\sigma_{2p}^*)$ HOMO is n_{2p} LUMO is σ_{2p}^* (3 points)

(c) Sketch the LUMO of HF. (3 points)

2013 Fall Semester Final Examination CH101 General Chemistry I

Date: December 18 (Wednesday), 2013

Time Limit: 7:00 ~ 9:00 p.m.

Write down your information neatly in the space provided below; print your Student ID in the upper right corner of every page.

Professor Name	Class	Student I.D.	Student Name

Problem	points	Problem	points	TOTAL pts
1	/12	6	/10	
2	/10	7	/6	
3	/10	8	/12	
4	/10	9	/8	
5	/10	10	/12	/100

** This paper consists of 10 sheets with 10 problems. There is also a page of constants (page 8), a periodic table (page 9), and a claim form (page 10). Please check all page numbers before taking the exam.

Write down your work and answers in the Answer sheet. Include the *unit (e.g. kJ/mol)* of your answer when applicable. You will get 30% deduction for a missing unit.

NOTICE: SCHEDULES on RETURN and CLAIM of the MARKED EXAM PAPER.

1. Period, Location and Procedure

- 1) Return and Claim Period: Dec 20 (Friday, 12:00-14:00)
- 2) Location: Creative Learning Bldg.(E11)

Class	Room
CH101	412

3) Claim Procedure:

Rule 1: Students cannot bring their own writing tools into the room. (Use a pen only provided by TA) Rule 2: With or without claim, you must submit the paper back to TA. (Do not go out of the room with it)

(During the period, you can check the marked exam paper from your TA and should hand in the paper with a FORM for claims if you have any claims on it. The claim is permitted only on the period. Keep that in mind! A solution file with answers for the examination will be uploaded on 12/20 on the web.)

2. Final Confirmation

```
1) Period: Dec 21(Sat) - 22(Sun)
```

2) Procedure: During this period, you can check the final score of the examination on the website again.

To get more information, visit the website at <u>www.gencheminkaist.pe.kr</u>.

1. (a) Arrange the following gases in order of increasing density at STP.

HCI, CO, CO₂, H₂S, Cl₂ (5 points)

(b) Associate one van der Waals constant a (17.58, 1.378, 3.392, 2.253, 0.2107 L² atm mol⁻²) with each of the following gases: O_2 , CH_3CN , Ne, CH_4 , CO_2 . (5 points)

(c) Give a brief explanation for the very high value in part (b) (2 points)

(Answer)

(a) $CO < H_2S < HCI < CO_2 < CI_2$ (3 points)

(b) Ne = 0.2107; $O_2 = 1.378$; CH₄ = 2.253; CO₂ = 3.392; CH₃CN = 17.53 (L² atm mol⁻²)

(5 points)

(c) Constant a for CH_3CN (17.58 L^2 atm mol⁻²) is very high because of relatively strong dipole-dipole attractions between the molecules (the CH_3CN molecule has a high dipole moment) (2 points – can give partial points)

2. A sample of an oxide of osmium (1.509 g) is gaseous at 200.0 $^{\circ}$ C /0.980 atm pressure and occupies 235 mL under these conditions. Assuming ideal gas behavior, determine the molecular formula of the oxide. [Molar masses (g mol⁻¹): Os = 190.2; O = 16.00. R = 0.08206 L atm K ⁻¹mol⁻¹. Take 0 $^{\circ}$ C to be 273 K]. Show working. (10 points)

(Answer)

Since the gas has ideal behavior,

PV = nRT, where $n = m/M_r (M_r \text{ is molar mass})$

n = (0.980 atm)(0.235 L)/(0.0802 L atm/K mol)(473 K)

= 0.00590 mol

Hence $M_r = (1.509 \text{ g})/0.00590 \text{ mol})$

= 254 g mol⁻¹

If the molecular formula of the oxide is OsO_x , then the molar mass is

192.0 g mol⁻¹ + $x(16.00 \text{ g mol}^{-1}) = 254 \text{ g mol}^{-1}$

x = 3.99 ~ 4

<u>Molecular formula is OsO₄</u> (10 points) (Allow for correct alternative working. Can give partial points)

3. If the root mean square velocity of helium gas is 1477 m s⁻¹,

(a) calculate the temperature of the gas and then

(b) calculate the root mean square velocity of nitrogen gas at this temperature.

[Molar masses (g mol⁻¹): He = 4.00; N = 14.01. R = 8.314 J K⁻¹ mol⁻¹)]. Show working. (2 x 5 points)

(Answer)

(a)
$$u_{rms} = \sqrt{\frac{3RT}{M_r}}$$

 $T = \frac{u_{rms}^2 M_r}{3R} = \frac{(1447 \text{ m/s})^2 (4.00 \times 10^{-3} \text{ kg/mol})}{3(8.314 \text{ J/K mol})}$
 $= 349.9 \text{ K}$ (5 points)
(b) $u_{rms} = \sqrt{\frac{3RT}{M_r}} = \sqrt{\frac{3(8.314 \text{ J/K mol})(349.9 \text{ K})}{(28.02 \times 10^{-3} \text{ kg/mol})}}$
 $= 558.1 \text{ m s}^{-1}$ (5 points)

Can give partial points

4. (a) Identify the substance that has the higher boiling point in the following pairs.

(i) BF_3 and BCI_3 (ii) pentane and 2,2-dimethylpropane (iii) *cis*-CIHC=CHCI and *trans*-CIHC=CHCI (iv) hexane (C₆H₁₄) and benzene (C₆H₆) (v) SO₂ and CO₂ (vi) CH₃COOH and HOOC-COOH (6 x 1 points)

(b) An oxide of manganese (Mn) has a unit crystal in which Mn ions are situated at the corners and oxide ions are found half way along the edges of the cube. Determine the formula unit of the oxide. Show working. (4 points)

(Answer)

(a) (i) BCl₃ (ii) pentane (iii) *cis*-CIHC=CHCI (iv) benzene (v) SO₂ (vi) HOOC-COOH

(6 x 1 points)

(b) Each unit cell has $8 \times 1/8 = 1$ Mn ion and $12 \times \frac{1}{4} = 3$ oxide ions.

Hence the oxide has 6,2 coordination and its formula unit is MnO₃ (4 points)

5. (a) Calculate the atomic radius of aluminum (AI) atoms (in picometers) in a facecentered cubic (fcc) crystal lattice, whose density is 2.718 g cm⁻³. [Avogadro number = 6.022×10^{23} mol⁻¹; molar mass of AI = 26.98 g mol⁻¹]. Show working. (7 points) (b) From your answer for part (a), calculate the fraction of the volume of aluminum occupied by its atoms. [The volume of a sphere is $4\pi r^2/3$]. Show working. (3 points) (Answer)

(a) Since an fcc structure has 4 atoms/unit cell,

density = 2.718 g/cm³ = $\frac{4 \times 26.98 \text{ g/mol}}{6.022 \times 10^{23} \text{ /mol}}$ a³ where a is the unit cube length

 $a^3 = 6.594 \times 10^{-23} \text{ cm}^3$, hence $a = 4.04 \times 10^{-8} \text{ cm}$ = 404 pm Since for a ffc structure $a = \frac{4r}{\sqrt{2}}$ where r is the atomic radius r = 142.8 pm (7 points) Can give partial points

(b) The ratio of the volume occupied by 4 atoms to the unit cell volume is

 $\frac{4\left(\frac{4}{3}\pi r^3\right)}{a^3} = 0.740 \qquad (3 \text{ points})$

6. Water (400.0 g) in an aluminum pan weighing 151.5 g was heated from 22.0 °C to boiling point (100.0 °C). Calculate the percentage (%) of the total heat supplied that is used to raise the temperature of the water to its boiling point. [Specific heat capacities ($J^{\circ}C^{-1}g^{-1}$): AI = 0.900; Water = 4.18]. Show working. (10 points)

(Answer)

Since the supplied heat is transferred to both the water and the aluminum,

 $q = m(w) Cp(w) \Delta T(w) + m(AI)Cp(AI) \Delta t(AI)$

=
$$(400.0 \text{ g})(4.18 \text{ J}^{\circ}\text{C}^{-1} \text{ g}^{-1})(78.0 \text{ }^{\circ}\text{C}) + (151.5 \text{ g})(0.900 \text{ J}^{\circ}\text{C}^{-1} \text{ g}^{-1})(78.0 \text{ }^{\circ}\text{C})$$

=
$$1.30 \times 10^5 \text{ J}$$
 + $0.106 \times 10^5 \text{ J}$ = $1.41 \times 10^5 \text{ J}$

Hence % of heat attributable to raising the temperature of water is

 $(1.30 \times 10^5 \text{ J}/1.41 \times 10^5 \text{ J}) \times 100$

= <u>92.2%</u> (10 points) Can give partial points. Allow correct alternative working

7. According to the equipartition theorem of Boltzmann, the heat capacity at constant pressure (C_p) of ideal gases can be expressed in terms of R (e.g. 5R/2), depending on the nature of the gas particles (atoms, diatomic molecules, etc). Determine the values of C_p for the following, assuming ideal gas behavior.

(i) Hydrazoic acid, HN=N=N (ii) Hydrogen cyanide, HCN (iii) Acetylene, HC=CH (iv) Argon, Ar (v) Hydrogen bromide, HBr (vi) Ozone, O₃ (6 x 1 points)
(Answer)

(i) 4R (ii) 7R/2 (iii) 7R/2 (iv) 5R/2 (v) 7R/2 (vi) 4R (6 x 1 points)

8. (a) Calculate the lattice energy of the sodium oxide lattice, given the following data (in kJ mol⁻¹). Show working.

 ΔH° (sublimation or atomization) of Na(s) = 107.32; ΔH° (dissociation) of O₂(g) = 498;

 ΔH° (ionization) (ionization energy, IE₁) of Na(g) = 494; Electron affinities of O(g) EA₁ = -

141 and $EA_2 = +844$; ΔH° (formation) of $Na_2O(s) = -409$. (10 points)

(b) State whether (i) calcium oxide (CaO) and (ii) potassium oxide (K_2O) will have higher or lower lattice energies than sodium oxide. (2 points)

(Answer)

(a) Na₂O(s) \rightarrow 2Na⁺(g) + O²⁻(g); Δ H_L

 $\Delta H_{L} = 2\Delta H^{\circ}$ (sublimation or atomization) of Na(s) + $\frac{1}{2}\Delta H^{\circ}$ (dissociation) of O₂(g) + 2IE₁ of Na(g) – EA₁ of O(g) – EA₂ of O(g) – ΔH° (formation) of Na₂O(s)

= 2(107.32 kJ/mol) + 249 kJ/mol + 2(494 kJ/mol) – 141 kJ/mol + 844 kJ/mol + 409 kJ/mol

= 2564 kJ/mol (10 points)

Allow for correct alternative method (e.g. using Hess's Law cycle). Can give partial points

```
(b) (i) Higher (ii) Lower (2 points)
```

9. The Boltzmann equation S = $k_B \ln W$, allows us to calculate the residual entropy of a crystal at (or very close to) 0 K. W is the number of microstates, which for a molecular crystal is the number of possible degenerate (same energy) orientations of molecules. Write the possible orientations of the following molecules and calculate their molar residual entropies according to the Boltzmann expression. [Avogadro's number is 6.02 x 10^{23} and k_B is 1.38 x 10^{-23} J K⁻¹]. Show working.

(1 point)

(i) $FCIO_3$ (ii) HBF_2 (iii) BF_3 (4 + 3 + 1 = 8 points)(Answer) $O_{\mu}^{\mu} = O_{\mu}^{\mu} = O_{\mu$ (i) $S = k_B \ln W = k_B \ln 4^{6.02 \times 10^{23}}$ = $(1.38 \times 10^{-23} \text{ J/K}) \times (6.02 \times 10^{23} \text{ /mol}) \times \ln 4$ (4 points) = 11.5 J/K mol (ii) H = B < F = F = B < F = B < F = 3 orientations Can allow partial points $S = k_B \ln W = k_B \ln 3^{6.02 \times 10^{23}}$ = (1.38 × 10⁻²³ J/K) x (6.02 x10²³ /mol) x ln3 = 9.13 J/K mol (3 points) $F = B \Big\langle F \\ F \Big\rangle$ 1 orientation (iii) $S = k_B \ln W = k_B \ln 1^{6.02 \times 10^{23}}$

<u>= 0</u>

10. Thermodynamic data for the reaction between BF_3 and water,

 $2BF_3(g) + 3H_2O(I) \rightarrow B_2O_3(s) + 6HF(g)$, is given below.

Standard enthalpies of formation (ΔH_f° in kJ mol⁻¹): BF₃(g) = -1137.0; H₂O(l) -285.83 = ; B₂O₃(s) = -1272.8; HF(g) =-271.1.

Standard entropies (S^o in J K⁻¹ mol⁻¹): BF₃(g) = 254.12; H₂O(I) = 69.91; B₂O₃(s) = 53.97; HF(g) = 173.78.

(a) Calculate the Gibbs free energy of reaction at 700 K and state whether the reaction is spontaneous at this temperature, assuming variation of ΔH° and ΔS° with temperature is negligible. Show working. (9 points)

(b) Determine the temperature at which the reaction is reversible. Show working. (3 points)

(Answer)

(a)

$$\begin{split} \Delta H^{\circ}_{r} &= 2\Delta H^{\circ}_{f} (BF_{3}, g) + 3\Delta H^{\circ}_{f} (H_{2}O, l) - [\Delta H^{\circ}_{f} (B_{2}O_{3}, s) \\ &+ 6\Delta H^{\circ}_{f} (HF, g)] \\ &= 2(-1137.0 \text{ kJ} \cdot \text{mol}^{-1}) + 3(-285.83 \text{ kJ} \cdot \text{mol}^{-1}) \\ &- [(-1272.8 \text{ kJ} \cdot \text{mol}^{-1}) + 6(-271.1 \text{ kJ} \cdot \text{mol}^{-1})] \\ &= -232.1 \text{ kJ} \cdot \text{mol}^{-1} \\ \Delta S^{\circ}_{r} &= 2S^{\circ}_{m} (BF_{3}, g) + 3S^{\circ}_{m} (H_{2}O, l) \\ &- [S^{\circ}_{m} (B_{2}O_{3}, S) + 6S^{\circ}_{m} (HF, g)] \\ &= 2(254.12 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}) + 3(69.91 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}) \\ &- [53.97 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} + 6(173.78 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})] \\ &= -378.68 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \end{split}$$

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = (+232.1 \text{ kJ mol}^{-1}) - (700 \text{ K}) (-0.37868 \text{ kJ K}^{-1} \text{ mol}^{-1})$

= $-32.98 \text{ kJ mol}^{-1}$. The reaction is spontaneous at this temperature. (9 points) Can give partial points. (b) At equilibrium, $\Delta G^{\circ} = O$, so that $\Delta H^{\circ} = T\Delta S^{\circ}$ T = $\Delta H^{\circ} / \Delta S^{\circ} = (+232.1 \text{ kJ mol}^{-1}) / (+0.37868 \text{ kJ K}^{-1} \text{ mol}^{-1})$

= <u>612.9 K</u> (3 points)

FUNDAMENTAL CONSTANTS

Name	Symbol	Value
Atomic mass constant	mu	$1.660.54 \times 10^{-27} \text{ kg}$
Avogadro's constant	NA	$6.022\ 14 \times 10^{23}\ \mathrm{mol}^{-1}$
Boltzmann's constant	k	$1.38065 \times 10^{-23}\mathrm{J}\cdot\mathrm{K}^{-1}$
Fundamental charge	е	$1.602\ 18 \times 10^{-19}\ C$
Faraday's constant	$F = N_A e$	$9.64853 \times 10^4 \mathrm{C \cdot mol^{-1}}$
Gas constant	$R = N_A k$	8.314 47 J·K ⁻¹ ·mol ⁻¹
		8.314 47 L·kPa·K ⁻¹ ·mol ⁻¹
		$8.20574 \times 10^{-2} \text{L}\cdot\text{atm}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$
		62.36 37 L·Torr·K ⁻¹ ·mol ⁻¹
		$8.31447 \times 10^{-2} \text{ L} \cdot \text{bar} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
Mass of electron	me	$9.109~38 \times 10^{-31} \mathrm{kg}$
Mass of neutron	mn	$1.67493 \times 10^{-27}\mathrm{kg}$
Mass of proton	mp	$1.672.62 \times 10^{-27} \mathrm{kg}$
Planck's constant	h	$6.626\ 08 \times 10^{-34}\ J\cdot s$
	$\hbar = h/2\pi$	1.05457×10^{-34} J·s
Rydberg constant	R	$3.289 84 \times 10^{15} \text{ Hz}$
Speed of light	с	$2.997 92 \times 10^8 \mathrm{m \cdot s^{-1}}$
Standard acceleration of free fall	g	9.806 65 m·s ⁻²
Vacuum permittivity	ε_0	$8.854 \ 19 \times 10^{-12} \ J^{-1} \cdot C^2 \cdot m^{-1}$

RELATIONS BETWEEN UNITS*

Property	Common unit	SI unit	
Mass	2.205 lb (lb = pound)	1.000 kg	
	1.000 lb	453.6 g	
	1.000 oz (oz = ounce)	28.35 g	
	1.000 ton (= 2000 lb)	907.2 kg	
	1 t (t = tonne, metric ton)	10 ³ kg	
Length	1.094 yd (yd = yard)	1.000 m	
	0.3937 in. (in. = inch)	1.000 cm	
	0.6214 mi (mi = mile)	1.000 km	
	1 in.	2.54 cm	
	1 ft (ft = foot)	30.48 cm	
	1.000 yd	0.9144 m	
	$1 \text{ Å} (\text{\AA} = \text{angström})$	10^{-10} m	
Volume	1 L (L = liter)	10 ³ cm ³ , 1 dm ³	100- 100 - 10
	1.000 gal (gal = gallon) [†]	3.785 dm ³ (3.785 L)	
	1.00 ft^3 (ft^3 = cubic foot)	$2.83 \times 10^{-2} \text{ m}^3$ (28.3 L)	
	1.00 qt (qt = quart) [†]	$9.46 \times 10^2 \mathrm{cm}^3$ (0.946 L)	
Time	1 min (min = minute)	60 s	
	1 h (h = hour)	3600 s	
	1 day	86 400 s	
Pressure	1 atm (atm = atmosphere)	1.013 25 × 10 ⁵ Pa	
	1.000 Torr or 1.000 mmHg	133.3 Pa	
	1.000 psi (psi = pounds per square inch)	6.895 kPa	
	1 bar	10 ⁵ Pa	
Energy	1 cal	4.184 J	
	1 eV	$1.60218 \times 10^{-19} \text{ J}; 96.485 \text{ kJ} \cdot \text{mol}^{-1}$	
	1 C·V	1 J	
	1 kWh (kWh = kilowatt hour)	$3.600 \times 10^3 \text{ kJ}$	
	I KWII (KWII - KIIOWAIL HOUI)		

*Entries in boldface type are exact.

[†]The European and Canadian Imperial quart and gallon are 1.201 times as large.

com tabu Edit	(1) Pure App Relative significar indicates indicates isotopeo However	7	6 51	4	5 3	PERIOD
com nave a cnara composition, and f tabulated. Editor: Aditya Vard	Pure Appl. Chem., 73, Relative atomic mas significant fgures. For nuclides, the value indicates the mass nu- lisorboed the element. However three such e	caesium 87 (223) FRANCIUM	Rubining S5 132.91	19 39.098 K POTASSIUM 37 85.468	цтним 11 22.990 Na SODIUM	GROUP 1 IA 1 1.0079 H HYDROGEN 3 6.941 Li
oom nave a cnaraccersic arrestrial isooopo composition, and for these an atomic weight is tabulated. Editor: Aditya Vardhan (ad ivar@netlinx.com)	(1) Pure Appl. Chem., 73 , No. 4, 667-683 (2001) Relative atomic mass is shown with five significant figures. For elements have not sable nuclides, the value enclosed in brackets indicates the massnumber of the long est-lived isotope of the element. However three such elements (Th, Pa, and U)	80	Sr STRONTIUM 56 137.33 Ba	3 20 40.078 Ca 1 CALCIUM 3 38 87.62	BERYLLIUM 12 24.305 MAGNESIUM	1 2 IIA 1 4 9.0122 Be
	-683 (2001) An with five 6 aveno stable in brackets longest-lived h, Pa, and U)	Lanthanide)) 89-103 Ac-Lr Actinide	м уптяцим 3 57-71 La-Lu	8 21 44.956 Sc SCANDIUM 2 39 88.906	3 3	
89 (227) 7 Ac ACTINIUM	ANTHANIDE 57 138.91 58 5 La LANTHANUM CE		1 ZRCONIUM 72 178.49	6 22 47.867 Ti M TITANIUM 6 40 91.224	8 4	FRIODIC TABLE
7) 90 232.04 Th M THORIUM	ANIDE 91 S8 140.12 91 Cerium	M TANTALUM	Nb иовіим 13 180.95 Та	67 23 50.942 V M VANADIUM 24 41 92.906	UN .	IUPAC REC ATON
04 91 231.04 Pa M PROTACTINIUM		наглии талтация тиновтен внении оялии іявии ралтиния ралтиния соца 104 (261) 105 (262) 106 (264) 108 (277) 109 (268) 110 (272) IRLf IDIb Sg IBIb IHIS MIt UUIID UUIUI китевовоми ривним велеовским воняция наязии метлиетим имилиции имилиция имилиции			SYMBOL	GROUP NUMBERS IUPAC RECOMMENDATION (1985) ATOMIC NUMBER
.04 92 238.03 L URANIUM URANIUM	59 140.91 60 144.24 61 (145) 62 150.36 Pr Nd IPmn Sm Sm полетним нео румим реометним samarium	EN RHENIUM 66) 107 (264) 7 IBID 310M BOHRIUM	Т терни 75 1 R	25 5 MANGA	7 80	
	4.24 61 (145 1 IPINN AIUM PROMETHIU	um osmium 264) 108 (277 h IEIS um Hassium	ТС Ru тесниетим китнемим 75 186.21 76 190.23 Re Os	A.938 26 55.845 27 58.933 In Fe Co INESE IRON COBALT (98) 44 101.07 45 102.91		
) 94 ЛР	(145) 62 150.36 IMA Sm ETHUM SAMARIUM	UM IRID 277) 109 S IN	u Rhodium 10.23 77 192.22 S Ir	.845 27 58.933 e Co Co N COBALT 000000000000000000000000000000000000		¥ 2A
		IRIDIUM PL/ 09 (268) 110 MIt UU		C0 1 208ALT N 5 102.91 46		HC MASS (I)
95 (243) 96 ALIIIII ((AMERICIUM C	63 151.96 6 Eu	PLATINUM 110 (281) 1 UUUIIII U	PALLADIUM 78 195.08 7 Pt 7	28 58.693 29 63.546 Ni Cu NICKEL COPPER 46 106.42 47 107.87		•
96 (247) 97 (C)[[]]] CURIUM BE	64 157.25 Gd GADOLINIUM	еоце 111 (272) ∭ЩЩ ∪NUNUNIUM	Ag SILVER 79 196.97 Au		8	Ĩ
97 (247) BRKELIUM	65 158.93 Тb ТЕРВІИМ	IRDUM PLATINUM GOLD MERCURY 109 (268) 110 (281) 111 (272) 112 (285) MIC UUUIN UUUIN UUUIN UUUIN UUUIN UUUIN	сармим 80 200.59 Н2	30 65.39 Zn ZlNC 48 112.41	12 IIB	
98 (251) 99	66 162.50 Dy DYSPROSIUN	THALLIUM	In INDIUM 81 204.38	112.41 49 114.82		13 IIA 5 10.811 B
j (Z)		село 114 (289) UUUQI имимочноним	Sn ^{TIN} 82 207.2 Pb	32 72.64 Ge Germanium 50 118.71	CARBON 14 28.086 Si SILICON	ME //www.ktf- 14 MA 6 12.01 C
) 100 (257) 17 1000 M FERMIUM	67 164.93 68 167.26 Нодиним егвним	œ	In Sn Sb Te INDIUM TIN ANTMONY TELLURIUM IC 81 204.38 82 207.2 83 208.98 84 (209) 85 TI Pb Bi Po 4 400 45	AS 121.77	NITROGEN 15 30.974 PHOSPHORUS	Ima 14 14 15 16 VIA 10.811 6 12.011 7 14.007 8 15.999 B C N O O
) 101 (258) MId MENDELEVIUM	69 168.93 Tm THULIUM		Тецияним в 84 (209) Ро	2 34 78.96 Se SELENIUM 6 52 127.60	NITROGEN OXYGEN 15 30.974 16 32.065 PHOSPHORUS SULPHUR	periodnilen/
$\begin{array}{c cccccc} (252) & 100 & (257) \\ 3 \\ 3 \\ \hline M \\ \hline \hline \hline M \\ \hline \hline \hline \hline$	- 8	POLONIUM ASTATINE	M IODINE 9) 85 (210) At	30 65.39 31 69.723 32 72.64 33 74.922 34 78.96 35 79.904 36 63.80 Znn Ga Ge As Se Br Kr zinc GALLIUM GERMANIUM ARSENIC SELENIUM BROMINE KRYPTON 48 112.41 49 114.82 50 118.71 51 121.76 52 127.60 53 126.90 54 131.29	BORON CARBON NITROGEN OXYGEN FLUORINE NEON 13 26.982 14 28.086 15 30.974 16 32.065 17 35.453 18 39.948 AI Si P S CI Ar ALUMINIUM SILICON PHOSPHORUS SULPHUR CHLORINE ARGON	VIA 17 VIIA 5.999 9 18.998 F
59) 103 (26)) IIIII M LAWRENCI	18-2002 ЕліС. (елі@інf-spit./ 70 173.04 71 174.97 УПТЕКВІИМ ЦИТЕТІИМ		те Хе 10) 86 (222) Rn	04 36 83.80 Kr E KRYPTON 90 54 131.29	4E NEON 53 18 39.94 Ar Argon	18 VIIIA 2 4.0026 He HELIUM 998 10 20.180 Ne
262) P	1.97 L.97 LM	ž	22) Ž	3.80	2 3 948	026 180

Class:_____, Professor Name:_____, Student I.D.:_____, Name:_____ If you have any claims on the marked paper, please write down them on this form and submit this with your paper in the assigned place. (And this form should be attached on the top of the marked paper with a stapler.) Please, copy this sheet if you need more before use.

	By Student	By TA		
		Accepted? Yes(v) or No(v)		
Question #	Claims	Yes: 🗆	No: 🗆	
		Pts (+/-)	Reasons	