2017 SPRING Semester Midterm Examination For General Chemistry I

Date: April 19 (Wed), Time Limit: 19:00 ~ 21:00

Write down your information neatly in the space provided below; print your Student ID in the upper right corner of every page.

Professor Name	Class	Student I.D. Number	Name

Problem	points	Problem	points	TOTAL pts
1	/8	6	/4	
2	/8	7	/9	
3	/13	8	/12	/100
4	/11	9	/15	
5	/9	10	/11	

** This paper consists of 15 sheets with 10 problems (page 13 - 14: constants & periodic table, page 15: claim form). Please check all page numbers before taking the exam. Write down your work and answers in the Answer sheet.

Please write down the unit of your answer when applicable. You will get 30% deduction for a missing unit.

NOTICE: SCHEDULES on RETURN and CLAIM of the MARKED EXAM PAPER. (채점답안지 분배 및 이의신청 일정)

1. Period, Location, and Procedure

- 1) Return and Claim Period: April 24 (Mon, 19: 00 ~ 20:00 p.m.)
- 2) Location: Room for quiz session
- 3) Procedure:

Rule 1: Students cannot bring their own writing tools into the room. (Use a pen only provided by TA)

Rule 2: With or without claim, you must submit the paper back to TA. (Do not go out of the room with it)

If you have any claims on it, you can submit the claim paper with your opinion. After writing your opinions on the claim form, attach it to your mid-term paper with a stapler. Give them to TA.

(The claim is permitted only on the period. Keep that in mind! A solution file with answers for the examination will be uploaded on 4/25 on the web.)

2. Final Confirmation

1) Period: April 27 (Thu) - April 28 (Fri)

2) Procedure: During this period, you can check final score of the examination on the website again.

** For further information, please visit General Chemistry website at <u>www.gencheminkaist.pe.kr</u>.

1. (total 8 pts) In each of the following Lewis diagrams, Z represents a main-group element. <u>Name the group</u> to which Z belongs in each case and <u>give an example</u> of such a compound or ion that actually exists.

(a)

2. (total 8 pts) Predict the geometry of the following molecules and ions precisely.

(a) ClO₃⁺

(Answer)

(b) ClO₂+

(Answer)

(c) SiH₄

(Answer)

(d) IF₅

(Answer)

3. (total 13 pts) A hydrogen atom that has <u>the Balmer series</u> in the visible region (Figure A; lines at 410.1, 434.1, 486.1, and 656.3 nm) was used for <u>Franck-Hertz experiment</u> (Figure B) and the following data in Figure C (note $V_{thr,1}$ = 10.2 V) were obtained.

(a) Draw <u>the electronic energy-level diagram</u> for this atom and show <u>the energy levels (with values)</u> of excited states relative to the ground state in eV.

(Answer)

(b) Predict the higher voltage thresholds, $V_{thr.2}$, $V_{thr.3}$, and $V_{thr.4}$. (Answer) **4. (total 11 pts)** Cyclobutadiene, C₄H₄, is the hydrocarbon with the following cyclic structure. The electronic structure of π -system can be understood by particle-in-a-box.

(a) One can assume that all C-C bond lengths are equal to L through resonance structure. Under this assumption, <u>draw the energy diagram of</u> π -system (Note that each state must be labeled by its energy and set of quantum numbers).

(Answer)

(b) However, cyclobutadiene may not have resonance structure. In this case, one can assume a slight symmetry breaking so that carbon backbone has rectangular structure with bond length *L* and $L - \delta$ where δ is much smaller than *L*. Under this assumption, <u>draw the energy diagram</u> of π -system (Note that each state must be labeled by its energy and set of quantum numbers.) (Answer)

(c) <u>Calculate the energy differences</u> between <u>ground state</u> and <u>first excitation state</u> for (a) and (b). Which model requires lower energy for excitation? (You may use the approximation $(1 + x)^n \approx$ 1 + nx for $|x| \ll 1$ and integer *n*) (Answer)

(d) Some experiments showed that cyclobutadiene is diamagnetic. <u>Can this result eliminate one</u> <u>model</u> out of two?
 (Answer)

- **5. (total 9 pts)** The first, second, and third ionization energies of phosphorus are 1011 *KJ/mol*, 1903
- *KJ/mol*, and 2912 *KJ/mol* respectively.
- (a) <u>Calculate the effective nuclear charge</u> (Z_{eff}) experienced by a 3p electron in phosphorus $[Ne]3s^23p^3$. Use the energy expression for the hydrogen atom $E_n = -R\frac{Z^2}{n^2}$ where the Rydberg constant $R = 2.1799 \times 10^{-18}$ J. (Answer)

(b) Would it be expected that the minimum energy necessary to eject a 3s electron from phosphorus in a photoelectron spectroscopy experiment be <u>larger</u>, <u>smaller</u>, <u>or the same</u> as the 4th ionization energy (*IE*₄) of phosphorus? Briefly explain your answer.
 (Answer)

(c) <u>Which experience less shielding</u>, 3s-electrons or 3p-electrons in phosphorus? Briefly explain why. (Answer)

(d) <u>Calculate number of radial and angular nodes</u> for a phosphorus 3p orbital. (Answer) **6. (total 4 pts)** For H atom, the radial node of ψ_{2S} is located at $r = 2a_0$ where a_0 is the Bohr radius of 0.53 Å. <u>Predict the radial position</u> of the ψ_{2S} node for He⁺ and Li²⁺. Rationalize your answer (please give the reason or meaning for your answer).

(Answer)

7. (total 9 pts) Here we have one of solved wave functions of an electron in a hydrogen atom.

$$\frac{1}{4\sqrt{2\pi}}a_0^{-3/2}\left(2-\frac{r}{a_0}\right)e^{-r/2a_0}$$

(a) <u>What orbital</u> is this? And what are the orbitals that have <u>the same energy value</u>?
 (Answer)

(b) Please roughly draw the radial wave function of the above orbital plotted against distance from the nucleus, r. (don't' worry about scales but indicate radial node)
 (Answer)

(c) Please roughly draw <u>the radial probability density</u> of the above orbital plotted against distance from the nucleus, r. (don't' worry about scales but indicate radial node)
 (Answer)

8. (total 12 pts) Does each of the following set of quantum numbers describe a possible atomic orbital? <u>Answer with 'YES' or 'NO'</u>. If the answer is 'YES', <u>give the label</u> for this orbital. If the answer is 'NO',

explain why an electron with that set of quantum numbers isn't possible.

[Examples of how to answer: (Example_a) n = 1, $\ell = 0$, m = 0, $m_s = \frac{1}{2}$ (Ans. **YES**, 1s); (Example_b) n = -1, $\ell = 0$, m = 0, $m_s = \frac{3}{2}$ (Ans. **NO**, *n* cannot be negative.)]

(a)
$$n = 4$$
, $\ell = 3$, $m = -3$, $m_s = +1/2$
(Answer)

(b)
$$n = 1$$
, $\ell = 0$, $m = 0$, $\underline{m}_{s} = -1$
(Answer)

(c)
$$n = 0$$
, $\ell = 0$, $m = 0$, $m_s = -1/2$
(Answer)

(d)
$$n = 2$$
, $\ell = 3$, $m = 0$, $m_s = +1/2$
(Answer)

(e)
$$n = 3$$
, $\ell = -2$, $m = 3$, $m_s = -1/2$
(Answer)

(f)
$$n = 3$$
, $\ell = 2$, $m = 3$, $m_s = -1/2$
(Answer)

9. (total 15 pts)

(a) The azide ion (N₃⁻) is a weakly bound molecular ion. Formulate its MO structure for localized σ bonds and delocalized π bonds.

(Answer)

(b) Do you expect N₃ and N₃⁺ to be bound as well? Which of the three species (N₃⁻, N₃ and N₃⁺) do you expect to be <u>paramagnetic</u>?
 (Answer)

(c) Draw the <u>possible Lewis resonance diagrams</u> for the nitrite ion (NO₂⁻). Use the VSEPR theory to determine <u>the steric number</u>, the <u>hybridization of the central nitrogen atom</u>, and the <u>geometry</u> of the ion.

(Answer)

(d) Show how the use of resonance structures of the nitrite ion can be avoided by introducing a

delocalized π MO. What bond order does the MO model predict for the N-O bonds in the nitrite ion?

(Answer)

10. (total 11 pts) This is a molecule called *trans*-diazene (N_2H_2) . Answer the following questions.

(a) Write hybridization for each nitrogen atom in trans-diazene.

(Answer)

(b) Draw <u>3D structure</u> of *trans*-diazene with <u>hybrid orbitals</u>. <u>Indicate lone pair</u> as well if it exists.
 <u>Mark for every bond</u> if it is σ or π bond.
 (Answer)

(c) <u>Write a wavefunction</u> for the σ bond between nitrogen atoms using VB theory. (Answer)

(d) Consider N₂ and N₂H₄ (Hydrazine) which are two other molecules containing two nitrogen atoms. <u>Expect the order of binding energy</u> of N-N among *trans*-N₂H₂, N₂, and N₂H₄.
 (Answer)

Physical Constants

Avogadro's number	$N_{\rm A} = 6.02214179 \times 10^{23} {\rm mol}^{-1}$
Bohr radius	$a_0 = 0.52917720859$ Å = 5. 2917720859 $\times 10^{-11}$ m
Boltzmann's constant	$k_{\rm B} = 1.3806504 \times 10^{-23} { m J} { m K}^{-1}$
Electron charge	e = 1.602176487 × 10 ⁻¹⁹ C
Faraday constant	$F = 96,485.3399 \text{ C mol}^{-1}$
Masses of fundamental particles:	the second se
Electron	$m_e = 9.10938215 \times 10^{-31} \text{ kg}$
Proton	$m_{\rm p} = 1.672621637 \times 10^{-27} \rm kg$
Neutron	$m_{\rm n} = 1.674927211 \times 10^{-27} \rm kg$
Permittivity of vacuum	$\epsilon_0 = 8.854187817 \times 10^{-12} \text{ C}^{-2} \text{ J}^{-1} \text{ m}^{-1}$
Planck's constant	$h = 6.62606896 \times 10^{-34} \text{ J s}$
Ratio of proton mass to electron mass	$m_p/m_e = 1836.15267247$
Speed of light in a vacuum	$c = 2.99792458 \times 10^8 \text{ m s}^{-1}$ (exactly)
Standard acceleration of terrestrial gravity	$g = 9.80665 \text{ m s}^{-2}$ (exactly)
Universal gas constant	$R = 8.314472 \text{ J mol}^{-1} \text{ K}^{-1}$
	= 0.0820574 L atm mol ⁻¹ K ⁻¹

Values are taken from the 2006 CODATA recommended values, as listed by the National Institute of Standards and Technology.

Conversion Factors

Ångström 1	$Å = 10^{-10} m$
Atomic mass unit	$1 u = 1.660538782 \times 10^{-27} \text{ kg}$
	$1 \text{ u} = 1.492417830 \times 10^{-10} \text{ J} = 931.494028 \text{ MeV}$ (energy equivalent from $E = mc^2$)
Calorie	1 cal = 4.184 J (exactly)
Electron volt	$1 \text{ eV} = 1.602177 \times 10^{-19} \text{ J}$
	= 96.485335 kJ mol
Foot	1 ft = 12 in = 0.3048 m (exactly)
Gallon (U.S.)	1 gallon = 4 quarts = 3.785412 L (exactly)
Liter	$1 L = 10^{-3} m^{-3} = 10^3 cm^3$ (exactly)
Liter-atmosphere	1 L atm = 101.325 J (exactly)
Metric ton	1 t = 1000 kg (exactly)
Pound	1 lb = 16 oz 0.4539237 kg (exactly)
Rydberg	$1 \text{ Ry} = 2.17987197 \times 10^{-18} \text{ J}$
	= 1312.7136 kJ mol
	= 13.60569193 eV
Standard atmosphere	$1 \text{ atm} = 1.01325 \times 10^5 \text{ Pa}$
	$= 1.01325 \times 10^5 \text{ kg m}^{-1} \text{ s}^{-2}$ (exactly)
Torr	1 torr = 133.3224 Pa

D	GROUP 1 A 1 1.0079		PE	R	B	C	A	BL	Т С	Ť	E			N N N N N N N N N N		S Anilen/	
PERIO	HYDROGEN	2 IIA		-	GROUP N UPAC RECON	IUMBERS IMENDATION	0	GROUP	9 NUMBERS BSTRACT SER 1986)	(VICE			13 IIIA	14 IVA	15	≶	VA 16 VIA
	3 6.941	4 9.0122			1		13 IIIA		100 mm				5 10.811	6 12.011	7 14	.007	.007 8 15.999
2	Li	Be			ATOMIC	NUMBER	5 10.811	RELATIVE	E ATOMIC MA	LSS (1)			в	Ω	Z		0
	LITHIUM	BERYLLIUM				SYMBOL -	B						BORON	CARBON	NITRO	GEN	GEN OXYGEN
	11 22.990	12 24.305					BORON	ELEMENI	CNAME				13 26.982	14 28.086	15 30	974	974 16 32.065
3	Na	Mg]					Al	S	Р		S
	SODIUM	MAGNESIUM	3 IIB	4	5 VB	6 VIB	7 VIIB	~	9	10	11 B	12 IB	ALUMINIUM	SILICON	PHOSPHOR	S	US SULPHUR
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.92	N	2 34 78.96
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ņ	Cu	Zn	Ga	Ge	As		Se
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC		SELENIUM
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76		52 127.60
UN	Rb	Sr	Y	Zr	Np	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	SP		Te
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NUBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	NDIUM	TIN	ANTIMONY		TELLURIUM
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98		84 (209)
6	S	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T	Pb	Bi	-	Po
	CAESIUM	BARIUM	Lanthanide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	L	POLONIUM
	87 (223)	88 (226)	89-103	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)		114 (289)			
7	Fr	Ra	Ac-Lr	Rí	Db	iq Nq	Bh	HIS	Mt	Uum	Www	Uub		Wwg			
	FRANCIUM	RADIUM	Actinide	RUTHERFORDUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM		UNUNQUADIUM			
				LANTHAN	IIDE												Copyright @ 195
(1) Pur	e Appl. Chem	73. No. 4. 667-69	83 (2001)	57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167	.26	7.26 69 168.93
sig	ative atomic n vificant figures. F	or elements have	with five 6 enostable	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	_	Tm
ind	aldes, the values cates the mass in the second seco	ue endosed in number of the ion	brackets)gest-lived	LANTHANUM	CERIUM	FRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM		THULIUM
H IS	wever three such	n elements (Th, F	Pa, and U)	ACTINIDE													
tab con do	nave a cnarac nposition, and fo ulated.	r these an atomic	c weight is	89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (25	3	7) 101 (258)
1			7	Ac	Th	Pa	U	Np	Pu	Am	$\Omega_{\rm IIII}$	Blk	ß	ks	Fina		Mid
Edi	tor: Aditya Vardh	ıan (adivar@nett	(inx.com)	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMI	M	UM MENDELEVIUM

<u>Claim Form for General Chemistry Examination</u>

Page (/)

Class:_____, Professor Name:_____, I.D.# :_____, Name:_____

If you have any claims on the marked paper, please write down them on this form and *submit this with your paper in the assigned place*. (And this form should be attached *on the top of the marked paper with a stapler*.) Please, *copy this* sheet if you need more before use.

	By Student	By TA		
			Accepted? $Yes(\forall) \text{ or } No(\forall)$	
Question #	Claims	Yes: 🗆	No: 🗆	
		Pts (+/-)	Reasons	

<The Answers>

Problem	points	Problem	points	TOTAL pts
1	4x2/8	6	2+2/4	
2	4x2/8	7	3x3/9	
3	10+3/13	8	6x2/12	/100
4	3+3+3+2/11	9	5+2+4+4/15	
5	3+2+2+2/9	10	2+5+2+2/11	

단순히 계산이 틀리거나 unit 이 맞지 않지만 내용이 모두 맞았을 때 -1 pt

1. (total 8 pts) Group # 1 pt, example 1 pt for each set

(a) (2 pts) In this structure of " ZO_2 ", the oxygen atoms both possess a formal charge of 0. Since there is no net charge on the molecule, Z must also have a f. c. of 0. Therefore, it has 4 valence electrons and belongs to Group IV. The compound CO_2 (carbon dioxide) is an example.

(b) (2 pts) In "ZO₂-", one of the oxygen atoms has a f. c. of zero but the other has f. c. -1. Since the species has a -1 net charge, Z must have f.c. of 0. Therefore, it comes from Group V (5 valence electrons). An example is NO_2^- (nitrite ion).

(c) (2 pts) In this Lewis structure of " Z_2O_7 ", each of the six peripheral O atoms has a formal charge of -1, but the bridging O atom has f.c. zero. Since the molecule has no net charge and is symmetrical, the f. c. on each Z is +3. Therefore, Z has 7 valence electrons and is in Group VII. An example is Cl_2O_7 (dichlorineheptaoxide).

(d) (2 pts) In "HOZO₃-", three of the O atoms have f.c. -1, and the other O atom and the H atom have f.c. zero. Since the ion has a -1 net charge, Z must have f.c. +2. Therefore, Z has 6 valence electrons and comes from Group VI. An example is HOSO₃- (hydrogen sulfate ion).

2. (total 8 pts) 2 pts for each set, no description of angles -1 pt

(a) (2 pts) The central CI atom has all of its valence electrons (six, because the ion has a net positive charge) involved in bonds to the surrounding three oxygen atoms and has no lone pairs. Its steric number is 3. In the molecular ion, the central CI should be surrounded by the three O atoms arranged in a trigonal planar structure.

(b) (2 pts) The central Cl atom in this ion also has a steric number of 3, comprising two bonded atoms and a single lone pair. The predicted molecular geometry is a bent molecule with an angle somewhat less than 120°.

(c) (2 pts) The central Si atom has a steric number of 4 and no lone pairs. The molecular geometry should consist of the Si atom surrounded by a regular tetrahedron of H atoms.

(d) (2 pts) lodine has seven valence electrons, of which five are shared in bonding pairs with F atoms. This leaves two electrons to form a lone pair, so the steric number is 5 (bonded atoms) 1 1 (lone pair) 5 6. The structure will be based on the octahedron of electron pairs from Figure 3.21, with five F atoms and one lone pair. The lone pair can be placed on any one of the six equivalent sites and will cause the four F atoms to bend away from it toward the fifth F atom, giving the distorted structure shown in Figure 3.24.

FIGURE 3.24 The structure of IF_5 . Note the distortions of F-I-F bond angles from 90° because of the lone pair at the bottom (not shown).

3. (total 13 pts)

- - - -

(a) (10 pts) Only energy level diagram 3 pts; Balmer series concept 3 pt; exact values 4 pts

|--|

n=1	 0 eV	Thus, the first excite
n=2	 10.2 eV	
n=3	 12.1 eV	$\frac{\partial U}{\partial t} = eV_{thr}$
n=4	 12.8 eV	hc
11-5	15.1 ev	

_____ 12.1 aV

Thus, the energy difference between the ground state (n = 1) and the first excited state (n = 2) is 10.2 eV. The lowest energy Balmer series 656.3 nm is for a transition of (n = $3 \rightarrow n = 2$). Thus, the 2nd excited state

(n = 3) is higher in energy than the ground state by 10.2 eV + $\frac{hc}{(656.3 \times 10^{-9} m)(1.6022 \times 10^{-19} J/eV)}$. Other series lines represent (n = 4 \rightarrow n = 2), (n = 5 \rightarrow n = 2), and (n = 6 \rightarrow n = 2) and thus their energy levels relative to the n = 2 can be obtained similarly.

(b) (3 pts) When the answers were wrong, correct concept (n = 1 to higher), 1 pt

 V_{thr} 's appears for transitions from n = 1 to higher-energy excited states. Thus, $V_{thr,2}$ = 12.1 V, $V_{thr,3}$ = 12.8 V, and $V_{thr,4}$ = 13.1 V.

4. (total 11 pts)

(a) (3 pts) (-0.5 pt deduction for each improper labeling & electron assignment)

$$E_{n_x,n_y} = \frac{h^2}{8m_e} \left(\frac{n_x^2}{L^2} + \frac{n_y^2}{L^2} \right)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2,2)$$

$$(2$$

 $E_3 = \frac{h^2}{m_e L^2}$

(b) (3 pts) (-0.5pt deduction for each improper labeling & electron assignment)

$$E_{n_x,n_y} = \frac{h^2}{8m_e} \left(\frac{n_x^2}{L^2} + \frac{n_y^2}{(L-\delta)^2} \right)$$

$$(1,2)$$

$$E_3 = \frac{h^2}{8m_e} \left(\frac{1}{L^2} + \frac{4}{(L-\delta)^2} \right)$$

$$(1,2)$$

$$E_2 = \frac{h^2}{8m_e} \left(\frac{4}{L^2} + \frac{1}{(L-\delta)^2} \right)$$

$$(1,1)$$

$$E_1 = \frac{h^2}{8m_e} \left(\frac{1}{L^2} + \frac{1}{(L-\delta)^2} \right)$$

(c) (3 pts) only for (a), 1 pt

 $\Delta E \text{ for } (a) = \frac{3h^2}{8m_e L^2}$ $\Delta E \text{ for } (b) = \frac{3h^2}{8m_e} \left(\frac{1}{(L-\delta)^2} - \frac{1}{L^2}\right) = \frac{3h^2}{8m_e L^2} \left(\left(1 - \frac{\delta}{L}\right)^{-2} - 1\right) \approx \frac{3h^2}{8m_e L^2} \cdot \frac{2\delta}{L}$ Model of (b) requires lower energy than model of (a). (1pt for each energy (approximation is not mandatory) / 1pt for correct comparison)

(d) (2 pts)

Yes. Model of (a) indicates cyclobutadiene is paramagnetic, whereas model of (b) indicates it is diamagnetic.

(No partial points)

5. (total 9 pts)

(a) (3 pts) $|E = -E_n = \frac{Z_{eff}^2 R}{n^2}$ $Z_{eff} = [\frac{n^2 IE}{R}]^{\frac{1}{2}}$ $|E = 1011 KJ/mol \times \frac{1000J}{KJ} \times \frac{mol}{6.022 \times 10^{23}} = 1.6788 \times 10^{-18} J$ $Z_{eff} = [\frac{(3)^2 (1.6788 \times 10^{-18} J)}{2.1799 \times 10^{-18} J}]^{\frac{1}{2}} = (6.9311)^{\frac{1}{2}}$ $Z_{eff} = 2.633$

(b) (2 pts) [Ne] $3s^2 3p^3 \rightarrow [\text{Ne}] 3s^1 3p^3 + e^-$

The E to eject a 3s electron from P would be <u>smaller</u> than the 4^{th} IE because there are more electrons in P, meaning more shielding and lower Z_{eff} .

(c) (2 pts) 3s 3s electrons penetrate closer to the nucleus, so z_{eff} avg. for $3s > Z_{eff}$ avg. for 3p.

(d) (2 pts) 3p orbital has a total of n-1=3-1=2 nodes. Of these, one is angular (l=1) and one is radial.

6. (total 4 pts) He⁺ and Li²⁺, 2 pts for each

The only difference between
$$\#$$
 and He^{\pm} is the
atomic number. (Ξ)
From $\overline{Zr} = 2a_0$
 $\Xi = 1; r = 2a_0, \quad \Xi = 2(He^{\pm}); r = a_0, \quad \Xi = 3(Li^{2\pm}); r = \frac{2}{3}a_0$
(H)

7. (total 9 pts)

(a) (3 pts) A: 2s A: 2p_x, 2p_y, 2p_z

8. (total 12 pts) 1 pt for YES or NO, 1 pt for labels and explanations, for each set

(a) n = 4, $\ell = 3$, m = -3, $\underline{m}_s = +1/2$ (YES, 4f) (b) n = 1, $\ell = 0$, m = 0, $\underline{m}_s = -1$ (NO, \underline{m}_s must be +1/2 or -1/2) (c) n = 0, $\ell = 0$, m = 0, $\underline{m}_s = -1/2$ (NO, '*n* cannot be zero.' or 'n = 1, 2, 3,' or '*n* must be positive integer.') (d) n = 2, $\ell = 3$, m = 0, $\underline{m}_s = +1/2$ (NO, ' ℓ must be less than or equal to n-1.' or ' $\ell = 0$, 1, ..., n-1.') (e) n = 3, $\ell = -2$, m = 3, $\underline{m}_s = -1/2$ (NO, ' ℓ cannot be negative.' or ' $\ell = 0$, 1, ..., n-1.') (f) n = 3, $\ell = 2$, m = 3, $\underline{m}_s = -1/2$ (NO, '|m| must be less than or equal to ℓ .' or ' $m = -\ell$, $-\ell + 1$, ..., $\ell - 1$, ℓ .')

9. (total 15 pts)

(a) (5 pts) sigma bonds 2 pts, pi bonds 3 pts

The azide ion N_3^- is linear and has 16 valence electrons just like the CO₂ molecule, which is discussed in some detail on text page 288. Two N—N σ bonds result from overlap of sp hybrid orbitals on the central N atom with $2p_z$ orbitals on the two outer N atoms. These bonds use 4 electrons. Lone pairs in each of the 2s orbitals of the outer N atoms account for another 4 electrons. The remaining six porbitals (two each on three atoms) overlap to form a π molecular orbital system to accommodate the remaining 8 valence electrons. The correlation diagram for CO₂ (text Figure 6.41) gives the relative energies of the MO's in this system. Four of the eight electrons thus go into the low-lying π_x and π_y orbitals. The remaining four go into the two π^{nb} orbitals. The π configuration is $(\pi)^4(\pi^{nb})^4$. This means a total of two π bonds and an overall bond order for the molecule of 4: (2 σ bonds plus 2 π bonds). The two N-to-N linkages are identical; each has bond order 2. All of the electrons are paired

(b) (2 pts) $N_3^- 1$ pt, N_3 and $N_3^+ 1$ pt

bonds). The two N-to-N linkages are identical; each has bond order 2. All of the electrons are paired so the compound is diamagnetic.

The N₃ molecule has 15 valence electrons. It derives from N₃⁻ by the loss of an electron. The loss comes from the highest energy molecular orbital which is a nonbonding MO. N₃ is bound with an overall bond order of 4, just like N₃⁻. Unlike N₃⁻, N₃ has an unpaired electron and is paramagnetic. The N₃⁺ ion has 14 valence-electrons. It derives from N₃⁻ by the loss of two nonbonding π electrons. The N₃⁺ molecular ion is therefore bound with bond order 4. There are two unpaired electrons in the set of π^{nb} MO's so N₃⁺ is paramagnetic, too.

(c) (4 pts) Lewis diagram 2 pts, VSEPR 2 pts

VSEPR theory assigns SN3 to the central N. The O atoms occupy two of the three sites, and the lone pair the third. The molecular ion is therefore bent. The hybridization at the nitrogen atom is sp^2 . Two of the three sp^2 hybrid orbitals form the σ bonds to the oxygen atoms, and the third accommodates the lone pair. The unhybridized $2p_z$ atomic orbital on the N atom is oriented

(d) (4 pts) pi MO 3 pts, bond order 1 pt

third accommodates the lone pair. The unhybridized $2p_z$ atomic orbital on the N atom is oriented perpendicular to the plane of the molecule. It overlaps with the $2p_z$ atomic orbitals of the two oxygen to form a π system. See text Figure 16.42. Two electrons occupy the bonding π orbital in this system and two electrons occupy the nonbonding (π^{nb}) orbital. The antibonding (π^*) orbital remains empty Adding the σ MO's to the bonding contributed by the π system gives an overall bond order of \vdots which amounts to $\frac{3}{2}$ for each bond. In a localized-orbital scheme, two resonance forms are necessar to represent the bonding in NO₂⁻.

Figure 6.42

- 10. (total 11 pts)
- (a) (2 pts) sp2, sp2 (No partial points)
- (b) (5 pts)
- σ bond framework and lone pairs (3 pts)

 π bond (2 pts)

 $\sigma\,$ bond framework w/ sp2 hybrid orbitals (2 pts) and lone pairs (1 pts) $\pi\,$ bond only – (2 pts)

(c) (2 pts) When sp² orbital of N^A is $\chi_1^A, \chi_2^A, \chi_3^A, \psi_{\sigma}^{Bond}(1,2) = C[\chi_1^A(1)\chi_1^B(2) + \chi_1^A(2)\chi_1^B(1)]$

(d) (2 pts) N₂ > *trans*-N₂H₂ > N₂H₄ (No partial points)

2017 SPRING Semester Final Examination For General Chemistry I

Date: June 14 (Wed), Time Limit: 19:00 ~ 21:00

Write down your information neatly in the space provided below; print your Student ID in the upper right corner of every page.

Professor Name	Class	Student I.D. Number		Name	
Problem	points	Problem	ро	oints	TOTAL pts
1	/4	7		/6	
2	/6	8		/6	
3	/12	9		/9	
4	/9	10		/10	/100
5	/12	11		/8	
6	/10	12		/8	

** This paper consists of 14 sheets with 12 problem sets (pages 12 & 13: constants & periodic table, page 14: claim form). Please check all page numbers before taking the exam. Write down your work and answers in the Answer sheet.

Please write down the unit of your answer when applicable. You will get 30% deduction for a missing unit.

NOTICE: SCHEDULES on RETURN and CLAIM of the MARKED EXAM PAPER.

- 1. Period, Location and Procedure
 - 1) Return and Claim Period: June 16 (Friday, 12:00-14:00)
 - 2) Location: Creative Learning Bldg.(E11)

Class	Room	Class	Class	Class	Room
Α	201	D	206	G	209
В	202	Е	207		
С	203	F	208		

3) Claim Procedure:

Rule 1: Students cannot bring their own writing tools into the room. (Use a pen only provided by TA)
Rule 2: With or without claim, you must submit the paper back to TA. (Do not go out of the room with it)
(During the period, you can check the marked exam paper from your TA and should hand in the paper with a FORM for claims if you have any claims on it. The claim is permitted only on the period. Keep that in mind! A solution file with answers for the

examination will be uploaded on 6/19 on the web.)

2. Final Confirmation

1) Period: June 17(Sat) - 18(Sun)

2) Procedure: During this period, you can check the final score of the examination on the website again.

To get more information, visit the website at www.gencheminkaist.pe.kr.

1. (4 pts) Assuming no temperature change, <u>determine the final pressure</u> inside the system below after all stopcocks are opened. Ignore the volume of the connecting tube and assume ideal gas behavior.

(Answer)

2. (6 pts) State <u>which attractive intermolecular force</u> does play the most dominant role in the following molecular pairs?

(a) Sodium ion - water

(Answer)

(b) Hydroxide ion - water

(Answer)

(c) Carbon dioxide gas - water

(Answer)

(d) Methanol - ethanol

(Answer)

(e) Chloride ion $-hexane(C_6H_{14})$

(Answer)

(f) $Octane(C_8H_{18})$ - $hexane(C_6H_{14})$

(Answer)

3. (12 pts) Balance each equation.

(a) $MnO_4^-(aq) + H_2S(aq) \rightarrow Mn^{2+}(aq) + SO_4^{2-}(aq)$

(Answer)

(b)
$$\operatorname{Zn}(s) + \operatorname{NO}_3^-(\operatorname{aq}) \to \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{NH}_4^+(\operatorname{aq})$$

(Answer)

(c)
$$H_2O_2(aq) + MnO_4^-(aq) \rightarrow O_2(g) + Mn^{2+}(aq)$$

(Answer)

(d)
$$Sn(s) + NO_3^-(aq) \rightarrow Sn^{4+}(aq) + N_2O(g)$$

(Answer)

(e)
$$UO_2^{2+}(aq) + Te(s) \rightarrow U^{4+}(aq) + TeO_4^{2-}(aq)$$

(Answer)

(f) The reactions, (a)-(e), began at the same acidic pH and then 1 mole of the substance underlined reacted completely. <u>Which reaction container</u> will have <u>the highest pH</u>? **(Answer)**

4. (9 pts) Below we have graphs of solvent vapor pressure versus mole fraction of solvent in ideal and nonideal solutions with nonvolatile solute.

(a) Explain positive deviation and negative deviation with <u>relative attraction forces</u> between solvent and solute.

(Answer)

(b) Explain boiling-point elevation of solution with nonvolatile solute.

(Answer)

(c) Which nonideal solution (positive deviation or negative deviation) will have <u>higher boiling-point</u> <u>elevation</u> effect? <u>Why</u>?
 (Answer)

5. (12 pts) Mixing 50.0 g of benzene(C_6H_6 , MW = 78.11 g/mol) with 50.0 g of n-hexane(C_6H_{14} , MW = 86.18g/mol) gives a nearly ideal solution. The vapor pressure of pure benzene is 0.1355 atm and the vapor pressure of pure n-hexane is 0.2128 atm.

(a) Calculate the mole fraction of n-hexane in this solution.

(Answer)

(b) Calculate the mole fraction of n-hexane in the vapor in equilibrium with the solution. (Answer)

(c) The vapor is removed and condensed to become liquid. Calculate the mole fraction of n-hexane in the vapor in equilibrium with this new solution.

(Answer)

(d) In order for mole fraction of n-hexane in the solution to be more than 0.850, at least <u>how many</u> <u>times</u> of fractional distillation are needed from the starting solution?
(starting solution = 50.0 g benzene + 50.0 g n-hexane)
(Answer)

6. (10 pts) Four moles of monatomic ideal gas goes through the cycle represented in following figure. Process A \rightarrow B is an isothermal expansion with temperature $T_A = 300$ K.

(a) Calculate $\underline{P_{A}}, \underline{P_{B}}, and \underline{T_{C}}$, the pressures and temperature reached in A, B and C. (Answer)

(b) Fill the following table with <u>numerical values in Joules</u>.

(Answer)

Process	ΔU	q	W
A→B		6915 J	
B→C			
$C \rightarrow A$			

7. (6 pts) Consider a system composed of one mole of liquid water at 25 °C placed in a cylinder with movable piston. In order words, the system includes liquid water plus the cylinder. This system is then heated under a constant external pressure of 1 atm until all the water evaporates and the final volume of the gas is 33.0 liter.

The change in state is

 $H_2O(\text{liquid}, 25 \degree \text{C}, 1 \text{ atm}) + \text{Cylinder}(25 \degree \text{C}) \rightarrow H_2O(\text{gas}, T, 1 \text{ atm}, 33 \text{ L}) + \text{Cylinder}(T)$

Calculate <u>the enthalpy of this change in state</u>. Assume that gaseous water is an ideal gas. C_p of liquid water and gaseous water is 75.3 JK⁻¹mol⁻¹ and 40.2 JK⁻¹mol⁻¹, respectively. C_p of cylinder is 1000 JK⁻¹. The heat of vaporization of water at 1 atm and 373 K is 40.6 kJmol⁻¹.

(Answer)

8. (6 pts) The equilibrium constant for the following reaction is 50.5 at 448 $^{\circ}$ C.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

Suppose that a vessel at this temperature contains 5.0 M H₂, 3.0 M I₂, and 1.0 M HI.

(a) Determine the concentrations of H_2 I_2 and HI when the mixture comes to equilibrium.

(Answer)

(b) What would happen if the concentration of HI at equilibrium were suddenly increased to 10.0 M? Determine the equilibrium concentrations of H_2 , I_2 and HI. (Answer) 9. (9 pts) A young chemist buys an "one-lung" motorcycle but, before learning how to drive it, wants to understand the processes that occur in its engine. The manual says the cylinder has a radius of 5.00 cm, a piston stroke of 12.00 cm, and a (volume) compression ratio of 8:1. If a mixture of gasoline vapor (taken to be C_8H_{18}) and air in mole ratio 1 : 62.5 is drawn into the cylinder at 80 °C and 1.00 atm, calculate:

(a) Calculate the volumes inside the cylinder of the engine before and after compression.

(Answer)

(b) Calculate the temperature of the compressed gases just before the spark plug ignites them. (Assume the gases are ideal, the compression is adiabatic, and the average heat capacity of the mixture of gasoline vapor and air is $c_P = 35 \text{ JK}^{-1}\text{mol}^{-1}$).

(Answer)

(c) Calculate the volume of the compressed gases just before ignition. (Answer)

(d) Calculate <u>the pressure of the compressed gases</u> just before ignition. **(Answer)**

- 10. (10 pts) Select the alphabet of the correct answer.
- (a) In a spontaneous process, which of the following always increases?
 - A) the entropy of the system
 - B) the entropy of the surroundings
 - C) the entropy of the universe
 - D) the entropy of the system and the universe
 - E) the entropy of the system, surroundings and the universe
- (b) Processes are always spontaneous, regardless of temperature, when _____ (H and S refer to the system).
 - A) $\Delta H > 0$ and $\Delta S < 0$ B) $\Delta H < 0$ and $\Delta S < 0$
 - C) $\Delta H > 0$ and $\Delta S > 0$ D) $\Delta H < 0$ and $\Delta S > 0$
 - E) None of these is true, as temperature must always be taken into account.
- (c) The dissolution of ammonium nitrate in water is a spontaneous endothermic process. It is spontaneous because the system undergoes ______
 - A) a decrease in enthalpy. B) an increase in entropy.
 - C) an increase in enthalpy D) a decrease in entropy.
 - E) an increase in free energy.
- (d) Any reaction will be spontaneous if _____
 - A) $\Delta G_{sys} > 0$ B) $\Delta G_{sys} < 0$
 - C) $\Delta S_{sys} > 0$ D) $\Delta S_{sys} < 0$
 - E) $\Delta H_{sys} < 0$
- (e) The entropy of vaporization of water is 109.0 J/mol ⋅K. What is the enthalpy of vaporization of water at its normal boiling point of 100°C?
 - A) +10.90 kJ/mol
 - B) –40.66 kJ/mol
 - C) +3.42 kJ/mol
 - D) +40.66 kJ/mol
 - E) -10.90 kJ/mol

11. (8 pts) In the ammonia synthesis,

	N ₂ (g)	+	3H ₂ (g)	⇔	2NH₃(g)
$\Delta H^{0}{}_{\rm f}$	0		0	-	46.1 KJ/mol
S ⁰	191.5		130.6		192.3 J/mol K

(a) Calculate the change of the Gibbs free energy of the reaction. Is the reaction spontaneous in the forward direction at 25°C?

(Answer)

(b) Estimate the highest temperature at which spontaneity is preserves, assuming that ΔH^0 and ΔS^0 remain constant throughout.

(Answer)

(c) Compute <u>the equilibrium constant</u> at 298 K. (Answer)

(d) Suppose that hydrogen, nitrogen, and ammonia gas mixed together in a closed vessel, each component having a partial pressure of 4 atm. Is the mixture in equilibrium at 25 °C?

(Answer)

12. (8 pts) At 25 °C the partition coefficient for the equilibrium

$$I_2(aq) \rightleftarrows I_2(CCl_4)$$

has the value K = 85. To 0.100 L of an aqueous solution, which is initially 2×10^{-3} *M* in I₂, we add 0.025 L of CCI₄. The mixture is shaken in a separatory funnel and allowed to separate into two phases, and the CCI₄ phase is withdrawn.

(a) Calculate the fraction of the I_2 remaining in the aqueous phase.

(Answer)

(b) Suppose the remaining aqueous phase is shaken with another 0.025 L of CCl₄ and again separated. What <u>fraction of the I_2 from the original aqueous solution is *now* in the aqueous phase? **(Answer)**</u>

(c) Compare the above to the case where the same total amount of CCl₄ (0.050 L) was used in a single extraction. Which is <u>the more efficient way</u> to remove iodine from water?
 (Answer)

Physical Constants	
Avogadro's number	$N_{\rm A} = 6.02214179 \times 10^{23} {\rm mol}^{-1}$
Bohr radius	$a_0 = 0.52917720859$ Å = 5. 2917720859 $ imes$ 10 ⁻¹¹ m
Boltzmann's constant	$k_{ m B} = 1.3806504 imes 10^{-23} { m J} { m K}^{-1}$
Electron charge	$e = 1.602176487 imes 10^{-19} \mathrm{C}$
Faraday constant	$F = 96,485.3399 \text{ C mol}^{-1}$
Masses of fundamental particles:	
Electron	$m_{ m e}=9.10938215 imes10^{-31} m kg$
Proton	$m_{\rm p} = 1.672621637 imes 10^{-27} {\rm kg}$
Neutron	$m_{\rm n} = 1.674927211 \times 10^{-27} \rm kg$
Permittivity of vacuum	$\epsilon_0 = 8.854187817 imes 10^{-12} \ C^{-2} \ J^{-1} \ m^{-1}$
Planck's constant	$h = 6.62606896 imes 10^{-34} { m J s}$
Ratio of proton mass to electron mass	m _p /m _e = 1836.15267247
Speed of light in a vacuum	$c = 2.99792458 \times 10^8 \text{ m s}^{-1}$ (exactly)
Standard acceleration of terrestrial gravity	$g = 9.80665 \text{ m s}^{-2}$ (exactly)
Universal gas constant	$R = 8.314472 \text{ J mol}^{-1} \text{ K}^{-1}$ = 0.0820574 L atm mol}^{-1} \text{ K}^{-1}

Values are taken from the 2006 CODATA recommended values, as listed by the National Institute of Standards and Technology.

Conversion Factors	
Ångström 1	$Å = 10^{-10} \mathrm{m}$
Atomic mass unit	1 u = 1.660538782 × 10 ⁻²⁷ kg
	1 u = 1.492417830 \times 10 ⁻¹⁰ J = 931.494028 MeV (energy equivalent from <i>E</i> = <i>mc</i> ²)
Calorie	1 cal = 4.184 J (exactly)
Electron volt	1 eV = 1.602177 $ imes$ 10 ⁻¹⁹ J
	= 96.485335 kJ mol ⁻¹
Foot	1 ft = 12 in = 0.3048 m (exactly)
Gallon (U.S.)	1 gallon = 4 quarts = 3.785412 L (exactly)
Liter	$1 L = 10^{-3} m^3 = 10^3 cm^3$ (exactly)
Liter-atmosphere	1 L atm = 101.325 J (exactly)
Metric ton	1 t = 1000 kg (exactly)
Pound	1 lb = 16 oz 0.4539237 kg (exactly)
Rydberg	1 Ry = 2.17987197 $ imes$ 10 ⁻¹⁸ J
	= 1312.7136 kJ mol
	= 13.60569193 eV
Standard atmosphere	$1 \text{ atm} = 1.01325 \times 10^5 \text{ Pa}$
	$=$ 1.01325 \times 10 ⁵ kg m ⁻¹ s ⁻² (exactly)
Torr	1 torr = 133.3224 Pa

numbers of radioactive isotopes.
6.9666 200.55 1111 112 Rg (280) (285)
(284)
88
69 Tm Thulium 168.9342
70 Yb Ytterbium 173.054
71 Lu Lutetium 174.9668
6

<u>Claim Form for General Chemistry Examination</u>

Page (/)

Class:_____, Professor Name:_____, I.D.# :_____, Name:_____

If you have any claims on the marked paper, please write down them on this form and *submit this with your paper in* the assigned place. (And this form should be attached on the top of the marked paper with a stapler.) Please, copy this

By Student		Ву ТА		
		Accepted? Yes(\checkmark) or No(\checkmark)		
Question #	Claims	Yes: 🗆	No: 🗆	
		Pts (+/-)	Reasons	

sheet if you need more before use.

<The Answers>

Problem	points	Problem	points	TOTAL pts
1	/4	7	1x4+2/6	
2	1x6/6	8	3+3/6	
3	2x6/12	9	2+3+2+2/9	
4	4+2+3/9	10	2x5/10	/100
5	2+3+3+4/12	11	2x4/8	
6	2+1x8/10	12	3+2+3/8	

Missing units in the answer: -1 pt, "-1 pt" means "minus 1 point"

1. (total 4 pts)

 $n_{\text{total}}RT = 2 \times 4 + 2 \times 1 + 4 \times 5$; $P = n_{\text{total}}RT/V_{\text{total}} = 30/10 = 3$ atm

2. (total 6 pts) 1 pt for each

- (a) Ion dipole force
- (b) Ion dipole force
- (c) Induced dipole force (Dipole induced dipole force)
- (d) Hydrogen bonding
- (e) Induced dipole force (Ion induced dipole force)

(f) Induced dipole – Induced dipole force (London dispersion force or Van der waals force)

3. (total 12 pts) 2 pts for each

- (a) $8MnO_4^-(aq) + 5H_2S(aq) + 14H_3O^+(aq) \rightarrow 8Mn^{2+}(aq) + 5SO_4^{2-}(aq) + 26H_2O(l)$
- (b) $4Zn(s) + NO_3^-(aq) + 10H_3O^+(aq) \rightarrow 4Zn^{2+}(aq) + NH_4^+(aq) + 13H_2O(l)$
- (c) $5H_2O_2(aq) + 2MnO_4^-(aq) + 6H_3O^+(aq) \rightarrow 5O_2(g) + 2Mn^{2+}(aq) + 14H_2O(l)$
- (d) $2Sn(s) + 2NO_3^{-}(aq) + 10H_3O^{+}(aq) \rightarrow 2Sn^{4+}(aq) + N_2O(g) + 15H_2O(l)$
- (e) $3UO_2^{2+}(aq) + Te(s) + 4H_3O^+(aq) \rightarrow U^{4+}(aq) + TeO_4^{2-}(aq) + 6H_2O(l)$

(f) **The reaction (d)** consumes the most proton (5 moles of protons/1 mole of the underlined substance) and thus results in the highest pH according to the balanced equations below.

4. (total 9 pts)

(a) (4 pts) Negative deviations solute-solvent attractions > solvent-solvent attractions Positive deviations solute-solvent attractions < solvent-solvent attractions

(b) (2 pts) Because a dissolved solute reduces the vapor pressure, the temperature of the solution must be increased to make it boil.

(c) (3 pts) Negative: more vapor-pressure lowering \rightarrow therefore more boiling point elevation

5. (total 12 pts)

(a) (2 pts)

 $\chi_{hexane} = \frac{50.0g/86.18g \cdot mol^{-1}}{50.0g/86.18g \cdot mol^{-1} + 50.0g/78.11g \cdot mol^{-1}} = 0.475$

(b) (3 pts) calculation of each P, 1 pt

By Raoult's law, $P_{benzene} = \chi_{benzene} \cdot P_{benzene}^o = 0.525 \cdot 0.1355$ atm = 0.0711 atm $P_{hexane} = \chi_{hexane} \cdot P_{hexane}^o = 0.475 \cdot 0.2128$ atm = 0.101 atm

Therefore, $\chi_{hexane,vapor} = \frac{0.101}{0.101+0.0711} = 0.587$

(c) (3 pts) calculation of each P, 1 pt By Raoult's law, $P_{benzene} = \chi_{benzene} \cdot P_{benzene}^o = 0.413 \cdot 0.1355 \ atm = 0.0560 \ atm$ $P_{hexane} = \chi_{hexane} \cdot P_{hexane}^o = 0.587 \cdot 0.2128 \ atm = 0.125 \ atm$

Therefore, $\chi_{hexane,vapor} = \frac{0.125}{0.0560+0.125} = 0.691$

(d) (4 pts) without explanation, 1 pt

Let's say the mole fraction of n-hexane in the solution after n distillation, χ_n . Then, $0.2128 \cdot \chi_{n-1}$ $0.2128 \cdot \chi_{n-1}$ $\chi_n = \frac{0.2126 \ \chi_{n-1}}{0.2128 \cdot \chi_{n-1} + (1 - \chi_{n-1}) \cdot 0.1355} = \frac{0.2126 \ \chi_{n-1}}{0.1355 + 0.0773 \chi_{n-1}}$ If we start with $\chi_0 = 0.476$, then $\chi_1 = 0.587, \chi_2 = 0.691, \chi_3 = 0.773, \chi_4 = 0.842, \ \chi_5 = 0.893$

5 times need at least.

6. (total 10 pts)

(a) (2 pts) Pressures, 1 pt; Temperature, 1 pt

Process A → B is isothermal, so
$$T_A = T_B$$

 $P_A = \frac{nRT_A}{V_A} = \frac{4 \text{ mol} \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \times 300 \text{ K}}{0.02 \text{ m}^3} = 4.988 \times 10^5 \text{ J m}^{-3} = 4.988 \times 10^5 \text{ Pa} (4.92 \text{ atm})$
 $P_A = \frac{nRT_A}{V_A} = \frac{4 \text{ mol} \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \times 300 \text{ K}}{0.04 \text{ m}^3} = 2.494 \times 10^5 \text{ J m}^{-3} = 2.494 \times 10^5 \text{ Pa} (2.46 \text{ atm})$
And $P_B = P_C$ and $V_C = V_A$,
 $T_C = \frac{P_C V_C}{nR} = \frac{P_B V_A}{nR} = \frac{(2.494 \times 10^5 \text{ J m}^{-3}) \times (0.02 \text{ m}^3)}{4 \text{ mol} \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1}} = 150 \text{ K}$

(b) (8 pts) for each value, 1 pt

Process	ΔU	q	W
A→B	0	6915 J	–6915 J
$B \rightarrow C$	–7483 J	–12471 J	4988 J
$C \rightarrow A$	7483 J	7483 J	0

1) $A \rightarrow B$

Because of A \rightarrow B Process is isothermal, $\Delta U_{AB} = 0$ So , $\Delta U_{AB} = q + w = 0$.

$$dq = -dw = PdV = \left(\frac{nRT}{V}\right)dV$$
$$q = \int_{A}^{B} dq = -\int_{A}^{B} dw = \int_{A}^{B} PdV = \int_{A}^{B} \left(\frac{nRT}{V}\right)dV$$
$$= 4 \text{ mol} \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \times 300 \text{ K} \times \ln \frac{0.04}{0.02} \text{ J}$$

=6915 J

and work is equal to -q, so w = -6915 J

2) B → C

$$w_{BC} = -P\Delta V = -(2.494 \times 10^5 \text{ J m}^{-3})(0.02 \text{ m}^3 - 0.04 \text{ m}^3) = +4988 \text{ J}$$

 $q_{BC} = nc_p\Delta T = (4 \text{ mol}) \left(\frac{5}{2}R\right) (150 - 300 \text{ K}) = -12471 \text{ J}$
Since $\Delta U_{AB} = q + w$, $\Delta U_{AB} = -12471 \text{ J} + 4988 \text{ J} = -7483 \text{ J}$

3) C →A

$$w_{\rm BC} = -P\Delta V = 0$$
 J
 $q_{\rm BC} = nc_v\Delta T = (4 \text{ mol}) \left(\frac{5}{2}R\right) (300 - 150 \text{ K}) = 7483 \text{ J}$

7. (6 pts) T, 1 pt; ΔH_1 , ΔH_2 , ΔH_3 = 1 pt for each, final value 2 pts

Calculating T = 402 K

$$\begin{split} &H_2O(I, 298K, 1 \text{ atm}) + C(298K) \dashrightarrow H_2O(I, 373K, 1 \text{ atm}) + C(373K) \dots \Delta H_1 \\ &H_2O(I, 373K, 1 \text{ atm}) + C(373K) \dashrightarrow H_2O(g, 373K, 1 \text{ atm}) + C(373K) \dots \Delta H_2 \\ &H_2O(g, 373K, 1 \text{ atm}) + C(373K) \dashrightarrow H_2O(g, 402K, 1 \text{ atm}) + C(402K) \dots \Delta H_3 \end{split}$$

```
\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3
= 75.3 (373-298) + 1000 (373-298) + 40600
+40.2 (402-373) + 1000 (402-373)
= 5647.5 + 75000+ 40600+ 1165.8 +29000
= 151413.3J = <u>151.4 kJ</u>
```

8. (6 pts)

(a) (3 pts) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ $5.0M \quad 3.0M \quad 1.0M$ $-x \quad -x \quad +2x$ Equilibrium $5.0-x \quad 3.0-x \quad 1.0+2x$

$$K = \frac{[HI]^2}{[H_2][I_2]} = \frac{(1.0 + 2x)^5}{(5.0 - x)(3.0 - x)} = 50.5$$

$$46.5x^2 - 408x + 756.5 = 0$$

$$x = \frac{408 \pm 160.48}{93.0} = 2.66M$$

$$[H_2] = 5.0 - 2.66 = 2.34M$$

$$[I_2] = 3.0 - 2.66 = 0.34M$$

$$[HI] = 1.0 + 2 \times 2.66 = 6.32M$$

(b) (3 pts) There would be a move toward a new equilibrium $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ 2.34M 0.34M 10.0M at equilibrium 2.34+x 0.34+x 10.0-2x

$$\begin{split} K &= \frac{[HI]^2}{[H_2][I_2]} = \frac{(10.0 - 2x)^2}{(2.34 + x)(0.34 + x)} = 50.5\\ x &= 0.315\\ [H_2] &= 2.34 + x = 2.66M\\ [I_2] &= 0.34 + x = 0.66M\\ [HI] &= 10 - 2x = 9.37M \end{split}$$

The stress of having too much HI is relieved.

9. (9 pts)

(a) (2 pts)

a) The gases trapped inside the cylinder of the "one-lung" engine have volume V_1 when the piston is fully withdrawn but a smaller volume V_2 when the piston is thrust home. The compression ratio is 8:1 so $V_1 = 8V_2$. The area of the base of the engine's cylinder is πr^2 , where r is the radius of the base. The volume of a cylinder is the area of its base times its height h

$$V_1 = Ah$$
 and $V_2 = A(h - 12.00 \text{ cm})$.

which employs the (given) fact that full compression shortens h by 12.00 cm. Because r is 5.00 cm, the area A is 78.54 cm². Substituting for V_1 and V_2 in terms of A and h gives

1.2

$$Ah = 8A(h - 12.00 \text{ cm})$$

The A's cancel, allowing solution for h. The result is 13.714 cm. Once h is known, it is easy to compute V_1 and V_2 , which equal 1.077 L and 0.1347 L respectively.

(b) (3 pts)

The temperature and pressure of the air-fuel mixture are 353 K (80°C) and 1.00 atm when the mixture enters the cylinder with fully withdrawn piston (V_1) . Assuming the air-fuel mixture is an ideal gas

$$n_{\text{mixture}} = \frac{(1.00 \text{ atm})(1.077 \text{ L})}{(0.08206 \text{ L atm mol}^{-1}\text{K}^{-1})(353 \text{ K})} = 0.0372 \text{ mol}$$

The molar ratio of air to fuel (C₈H₁₈) is 62.5 to 1, so $n_{\rm air} = 62.5 n_{\rm fuel}$. and it follows that at the start the cylinder contains 0.0366 mol of air and 5.86×10^{-4} mol of octane fuel.

During the compression stroke, the system undergoes an irreversible adiabatic compression to oneeighth of its initial volume. None of the relationships that govern *reversible* adiabatic processes applies. Assume however, as advised in the problem, that the compression is near to reversible. If it is, and if the mixture of gases in the cylinder is approximately ideal, then

$$T_1 V_1^{\gamma - 1} \approx T_2 V_2^{\gamma - 1}$$
 where $\gamma = \frac{c_{\rm P}}{c_{\rm V}} = \frac{c_{\rm P}}{c_{\rm P} - R} = \frac{35 \text{ J K}^{-1} \text{mol}^{-1}}{(35 - 8.315) \text{ J K}^{-1} \text{mol}^{-1}} = 1.31$

The temperature after the compression stroke is

$$T_2 \approx T_1 \left(\frac{V_1}{V_2}\right)^{\gamma-1} = (353 \text{ K}) \left(\frac{1.077 \text{ L}}{0.1347 \text{ L}}\right)^{0.31} = (353 \text{ K})(8)^{0.31} = \boxed{673 \text{ K}}$$

(c) (2 pts)

The compressed gases occupy a volume of 0.135 L just before they are ignited, as calculated in (a).

(d) (2 pts)

c) The pressure of the compressed air-fuel mixture just before ignition is P_2 . Compute it by applying the ideal-gas equation to the system with $T_2 = 673$ K, $V_2 = 0.1347$ L, and n = 0.0372 mol.

$$P_2 \approx \frac{nRT_2}{V_2} = \frac{0.0372 \text{ mol}(0.082057 \text{ L atm mol}^{-1}\text{K}^{-1})(673 \text{ K})}{0.1347 \text{ L}} = \boxed{15.3 \text{ atm}}$$

Alternatively, estimate P_2 using the formula for a reversible adiabatic change

$$P_2 \approx P_1 \left(\frac{V_1}{V_2}\right)^{\gamma} = 1.00 \text{ atm} \left(\frac{1.077}{0.1347}\right)^{1.31} = \boxed{15.3 \text{ atm}}$$

10. (10 pts) 2 pts for each set

(a) C (page 592)
(b) D (page 597)
(c) B (page 597)
(d) B (page 594)
(e) D (page 582)

11. (8 pts) 2 pts for each set

(a) $\triangle H^0 = (2 \text{mol}) (46.\text{kJ mol}^{-1}) - 0 - 3(0) = -92.2\text{kJ}$

 $\Delta S^{0} = 2 \text{mol } \times \frac{192.3J}{molk} - 1 \text{mol } \times \frac{191.SJ}{molk} - 3 \text{mol } \times \frac{130.6J}{molk}$ = -198.7 J·K-1 = -0.1987 kJ·K-1

 $\Delta G^{0} = \Delta H^{0}$ -T $\Delta S^{0} = -92.2$ kJ - (298K) (-0.1987 kJ/K) = -92.2kJ + 59.24kJ = -33.0 kJ

The reaction is spontaneous.

(b) The crossover ($\triangle G^0=0$)is reached when $\triangle H^0 = T \triangle S^0$

$$\frac{\Delta H^{0}}{\mathsf{T}=\Delta S^{0}} = \frac{-92.2kJ}{0.1987\,kJK^{-1}} = 464\mathsf{K}$$

(c) K= exp(
$$-\frac{\Delta G^{0}}{RT}$$
)
= exp($-\frac{-33.0kJ}{(8.3145J/K)(298K)} \times \frac{1000J}{kJ}$)
= exp(13.32)
= 6.1 x 10⁵

(d) Q =
$$\frac{p_{NH_8}^2}{p_{N_2}p_{H_2}^3} = \frac{(4.0)^2}{(4.0)(4.0)^3} = 0.0625$$

Q differs substantially from K (= 6.1×10^5) The mixture is not yet at equilibrium.

12. (8 pts)

(a) (3 pts)

a) The chemical amount of I_2 initially in the 0.100 L of aqueous solution is

$$I_{I_2} = 0.100 \text{ L} \times \left(\frac{2 \times 10^{-3} \text{ mol } I_2}{1.00 \text{ L}} \right) = 2 \times 10^{-4} \text{ mol } I_2$$

Shaking this solution with 0.025 L of CCl₄ in a separatory funnel allows the I₂ to distribute itself between the two phases. When the partition of the I₂ between the phases comes to equilibrium at 25°C, y mol of I₂ has moved into the CCl₄ phase, and $(2 \times 10^{-4} - y)$ mol remains in the aqueous phase. Assume that the two solvents are perfectly immiscible—that no water dissolves in the CCl₄ and that no CCl₄ dissolves in the water. Then the volumes of the two solvents remain unchanged and the concentrations of the solute in the two phases are

$$[I_2]_{(aq)} = \left(\frac{2 \times 10^{-4} - y}{0.100}\right) \text{ mol } L^{-1} \text{ and } [I_2]_{(CCl_4)} = \left(\frac{y}{0.025}\right) \text{ mol } L^{-1}$$

The mass-action expression for this system is

n

$$\frac{[I_2]_{(CCl_4)}}{[I_2]_{(aq)}} = K = 85 \quad \text{from which} \quad \frac{y/0.025}{(2 \times 10^{-4} - y)/0.100} = 85$$

The last equation is easily solved for y, which equals 1.91×10^{-4} mol. Remember that y is the amount of I_2 that transfers to the CCl₄. and not a concentration. By subtraction, the amount remaining in the water is 0.09×10^{-4} mol. The fraction remaining equals the amount remaining divided by the original amount

$$f = \frac{0.09 \times 10^{-4}}{2 \times 10^{-4}} = 0.045 = \boxed{0.04}$$

(b) (2 pts)

b) The first extraction with 0.025 L of CCl₄ leaves only 0.045 (4.5%) of the I_2 in the water. Another extraction with a fresh 0.025 L of CCl₄ will leave only 0.045 of that 0.045. The fraction remaining after these successive treatments is

$$f = 0.045 \times 0.045 = 0.0020$$

(c) (3 pts) no reason: 1 pts, calculation for 0.023: all 3 pts

c) From text Example 14.18, the fraction of I_2 remaining in the water after a single 0.050 L extraction is 0.023, which is substantially larger than 0.0020.

Tip. It is about 11 times more efficient to extract the iodine with two half-sized portions of CCl_4 rather than one large portion. In general, it is more efficient to use several smaller portions of solvent. rather than one or two portions in performing separations by extraction.