2018 FALL Semester Midterm Exam For General Chemistry I

Date: October 17 (Wed), Time Limit: 19:00 ~ 21:00

Write down your information neatly in the space provided below; print your Student ID in the upper right corner of every page.

Professor Name	Class	Student I.D. Number	Name

Problem	points	Problem	points	TOTAL pts
1	/15	6	/12	
2	/5	7	/10	
3	/10	8	/6	/100
4	/10	9	/8	
5	/9	10	/15	

** This paper consists of 12 sheets with 10 problems (page 10 - 11: constants & periodic table, page 12: claim form). Please check all page numbers before taking the exam. Write down your work and answers in the Answer sheet.

Please write down the unit of your answer when applicable. You will get 30% deduction for a missing unit.

NOTICE: SCHEDULES on RETURN and CLAIM of the MARKED EXAM PAPER. (채점 답안지 분배 및 이의신청 일정)

1. Period, Location, and Procedure

- 1) Return and Claim Period: October 22 (Mon, 19: 00 ~ 20:00 p.m.)
- 2) Location: Room for quiz session
- 3) Procedure:

Rule 1: Students cannot bring their own writing tools into the room. (Use a pen only provided by TA) Rule 2: With or without claim, you must submit the paper back to TA. (Do not go out of the room with it)

If you have any claims on it, you can submit the claim paper with your opinion. After writing your opinions on the claim form, attach it to your mid-term paper with a stapler. Give them to TA.

(The claim is permitted only on the period. Keep that in mind! A solution file with answers for the examination will

be uploaded on 10/22 on the web.)

2. Final Confirmation

- 1) Period: October 25 (Thu) October 26 (Fri)
- 2) Procedure: During this period, you can check final score of the examination on the website again.

** For further information, please visit General Chemistry website at <u>www.gencheminkaist.pe.kr</u>.

1. (Total 15 pts) Give the steric number for each molecule in the table. Predict the geometry using the VSEPR method. For the geometry, provide a schematic drawing and describe the molecular shape in short words by choosing from "linear, trigonal planar, tetrahedral, trigonal bipyramidal, square pyramidal, octahedral, square planar, seesaw shape, and distorted T shape". In each case, the central atom is listed first and the other atoms are all bonded directly to it. In the drawing, explicitly specify the locations of lone electron pairs based on the Lewis diagram. Follow the example of NH₃ below.

	NH₃ (example)	CBr ₄	SO ₃
Steric number	4		
Geometry	~ ^N .,,,		
	Trigonal pyramidal		
	l₃ [−]	XeF ₄	ICI ₃
Steric number			
Geometry			

2. (total 5 pts) Write down the ground state electron configurations for the ions, Be⁺, C⁻, Ne²⁺, Mg⁺, P²⁺, Cl⁻, As⁺, and l⁻. Among these ions, which do you expect to be diamagnetic?

- **3. (total 10 pts)** The non-normalized wavefunction of a particle in a one-dimensional box with the length *L* is $\psi(x) = \sin(n\pi x/L)$.
- (a) Properly normalize this wavefunction.

(b) What is the probability that the particle will lie between x = 0 and x = L/4, if the particle is in its n = 3 state?

- (c) What is the probability that the particle will lie between x = 0 and x = L/2, if the particle is in its n = 20181017 state?
- (d) What is the probability that the particle will lie between x = L/2 and x = L, if the particle is in its n = 20181018 state?

4. (total 10 pts) Light with a wavelength of 525 nm strikes the surface of metallic rubidium in a photocell. The work function of rubidium is 2.09 eV.
(a) Convert the work function in the unit of J.

(b) Calculate the maximum velocity of the photoelectrons.

(c) Determine the longest wavelength of light that is capable of ejecting electrons from the surface of rubidium.

5. (total 9 pts) Which has the higher value in each pair below? Briefly explain the reason. IE = ionization energy.

(a) The 1^{st} IE of AI or the 1^{st} IE of Mg

(b) The 2nd IE of AI or the 2nd IE of Mg

(c) The 3^{rd} IE of AI or the 3^{rd} IE of Mg

6. (total 12 pts) One electronic wavefunction of a hydrogen atom is

$$\psi = r e^{-r/2a} \cos \theta$$

(a) Show that this satisfies the Schrödinger equation,

$$-\frac{\hbar^2}{2m_e}\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right]\psi - \frac{e^2}{4\pi\varepsilon_0}\frac{1}{r}\psi = E\psi$$

and obtain the corresponding energy eigenvalue *E* in the unit of eV. To solve this problem, you will need $a = 4\pi\varepsilon_0\hbar^2 / (e^2m_e)$, or equivalently $e^2 / (4\pi\varepsilon_0) = \hbar^2 / (m_ea)$. Also, $h = 2\pi\hbar$.

(b) Sketch the 3-dimensional shape of this orbital, and designate its three quantum numbers (*n*, *l*, *m*).

(c) If the electron in this hydrogen atom radiates a photon to de-excite into a state described by the 1s orbital, what is the wavelength of this photon? Recall that $E_n \propto 1/n^2$.

7. (total 10 pts) The electronic wavefunction of a hydrogen atom can be written as $\psi_{n,l,m}(\mathbf{r}) = R_{n,l}(r)Y_{l,m}(\theta,\phi)$.

(a) Give all possible values of quantum numbers (l, m) with n = 3.

(b) Using the table below, write down the normalized form of the wavefunction with the lowest *l* value in (a).

Angular Part $Y(\theta, \phi)$	Radial Part $R_{n\ell}(r)$
$\ell = 0 \left\{ Y_s = \left(\frac{1}{4\pi}\right)^{1/2} \right\}$	$R_{1s} = 2\left(\frac{Z}{a_0}\right)^{3/2} \exp(-\sigma)$ $R_{2s} = \frac{1}{2\sqrt{2}}\left(\frac{Z}{a_0}\right)^{3/2} (2-\sigma) \exp(-\sigma/2)$
	$R_{3s} = \frac{2}{81\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} (27 - 18\sigma + 2\sigma^2) \exp(-\sigma/3)$
$\sigma = rac{Zr}{a_0}$	$a_0 = rac{\epsilon_0 h^2}{\pi e^2 m_e} = 0.529 imes 10^{-10} { m m}$

(c) By integrating over the angular part, derive the radial distribution function P(r) for the wavefunction in (b). Namely, use $P(r)dr = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} |\psi(r,\theta,\phi)|^2 r^2 \sin\theta dr d\theta d\phi$ and obtain P(r).

(d) Sketch both the wavefunction in (b) and the radial distribution function in (c) as functions of σ . Quantitatively specify the locations of radial nodes.

8. (total 6 pts) Noting $\lambda = \frac{h}{p}$ and p = mv, calculate the de Broglie wavelength for the following: (a) an electron moving at a speed of 1.0 km s⁻¹

(b) a baseball with a mass of 145 g, moving at a speed of 75 km hr⁻¹

9. (total 8 pts) Consider an acetamide (CH₃CONH₂) molecule.

(a) Draw the Lewis diagram of this molecule with all possible resonance structures.

(b) What is the proper hybridization of each carbon atom?

(c) Based on the information that the three bonds around the N atom form a nearly planar triangle, sketch the shape of the energetically most stable π bonding molecular orbital.

10. (total **15** pts) The following diagram shows the molecular orbital energy levels for the homonuclear diatomics, N_2 and O_2 .

(a) Fill in the boxes with appropriate molecular orbital notations as in the case of $\sigma_{u_{2s}}^{*}$, based on the linear combination of atomic orbital (LCAO) scheme.

(b) In the two circles in the above diagram, designate which are N_2 and O_2 , respectively. Fill the MO levels with arrows to represent the electronic structures of both molecules.

(c) The following data show that removing an electron from N_2 forms an ion with a weaker / longer bond than in the parent molecule, whereas the ion formed from O_2 has a stronger / shorter bond:

	N ₂	N ₂ +	O ₂	O ₂ +
Bond energy (kJ/mol)	945	841	498	623
Bond length (pm)	110	112	121	112

Explain these facts with the above completed diagram together with the bond order concept.

(d) For liquefied nitrogen and oxygen, which will be attracted to the space between the poles of a magnet as in the following picture? Explain your reasoning with less than 30 words.

Physical Constants

Avogadro's number	N_{A} = 6.02214179 × 10 ²³ mol ⁻¹
Bohr radius	<i>a₀</i> = 0.52917720859 Å = 5.2917720859 × 10 ⁻¹¹ m
Boltzmann's constant	K_B = 1.3806504 × 10 ⁻²³ J K ⁻¹
Electronic charge	$e = 1.602176487 \times 10^{-19} \text{ C}$
Faraday constant	<i>F</i> = 96485.3399 C mol ⁻¹
Masses of fundamental particles:	
Electron	m_e = 9.10938215 \times 10 ⁻³¹ kg
Proton	m_P = 1.672621637 × 10 ⁻²⁷ kg
Neutron	m_n = 1.674927211 × 10 ⁻²⁷ kg
Permittivity of vacuum	ϵ_{o} = 8.854187817 $~\times~~10^{-12}C^{-2}J^{-1}m^{-1}$
Planck's constant	$h = 6.62606896 \times 10^{-34} \mathrm{Js}$
Ratio of proton mass to electron mass	<i>m_P</i> / <i>m_e</i> = 1836.15267247
Standard acceleration of terrestrial gravity	<i>g</i> = 9.80665 m s ⁻² (exactly)
Universal gas constant	<i>R</i> = 8.314472 J mol ⁻¹ K ⁻¹ = 0.0820574 L atm mol ⁻¹ K ⁻¹

Values are taken from the 2006 CODATA recommended values, as listed by the National Institute of Standards and Technology.

Conversion factors

Ångström	1 Å= 10 ⁻¹⁰ m
Atomic mass unit	1 u = 1.660538782 \times 10 ⁻²⁷ kg
	1 u = 1.492417830 × 10 ⁻¹⁰ J = 931.494028 MeV (energy equivalent form <i>E = mc</i> ²)
Calorie	1 cal = 4.184 J (exactly)
Electron volt	1 eV = 1.602177 × 10 ⁻¹⁹ J = 96.485335 kJ mol
Foot	1 ft = 12 in = 0.3048 m (exactly)
Gallon (U. S.)	1 gallon = 4 quarts = 3.785412 L (exactly)
Liter	1 L = 10 ⁻³ m ⁻³ = 10 ³ cm ³ (exactly)
Liter-atmosphere	1 L atm = 101.325 J (exactly)
Metric ton	1 t = 1000 kg (exactly)
Pound	1 lb = 16 oz = 0.4539237 kg (exactly)
Rydberg	1 Ry = 2.17987197 x 10 ⁻¹⁸ J = 1312.7136 kJ mol = 13.60569193 eV
Standard atmosphere	1 atm = 1.01325 x 10 ⁵ Pa = 1.01325 x 10 ⁵ kg m ⁻¹ s ⁻² (exactly)
Torr	1 torr = 133.3224 Pa

Ed		11 CO 10	러	inc	nu sig	(1) Pu				T			6			UI			4			u			2		P	ERIC	D		
itor: Aditya Va		mposition, and ulated.	wever three s	licates the ma tope of the ele	nificant figure	re Appl. Chen			FRANCIL	Fr	87 (22	CAESIU	S	55 132	RUBIDIU	Rb	37 85.4	POTASSI	K	19 39.0	SODIUN	Na	11 22.9	LITHIUN	Li	3 6.9	HYDROG	H	1 1.00	1	GROU
urdhan (ac		d for these	uch elem	ss numbe ment.	s. For eler	n., 73, No			JM R		23) 88	M B/		91 56	M STR	-	68 38	JM CA	~	98 20	A MAG		90 12	A BEF	<u> </u>	4 4	EN 2		79		Ч
livar@nettl		e an atomic	ents (Th, P	r of the lon	s shown nentshave closed in	. 4, 667-68			ADIUM	Za	(226)	ARIUM	Ba	137.33	ONTIUM	Sr	87.62	TCINW	ື່ສ	40.078	INESIUM	a Z	24.305	RYLLIUM	Be	9.0122	IA				
inx.com)	7	weight is	a, and U)	gest-lived	with nive b hostable brackets	3 (2001)			Acumue	Ac-Lr	89-103	Lanthanide	La-Lu	57-71	YTTRIUM	Y	39 88.906	SCANDIUM	Sc	21 44.956	3 B										
ACTINIUM	Ac	89 (227)	ACTINIDE	LANTHANUM	La	•	57 138.91	LANTHAN	RUTHERFORDIUM	Rí	104 (261)	HAFNIUM	Hf	72 178.49	ZIRCONIUM	Zr	40 91.224	TITANIUM	Ti	22 47.867	4 IVB						E	ſ			
THORIUM	Th	90 232.04		CERIUM	Ce	2	58 140.12	IDE	DUBNIUM	Шb	105 (262)	TANTALUM	Ta	73 180.95	NIOBIUM	Np	41 92.906	VANADIUM	V	23 50.942	5 VB				ATOMIC		51) JODAN OVAD	GROUP		C C	כ
PROTACTINIUN	Pa	91 231.04		PRASEODYMIUN	Pr	J	59 140.91		SEABORGIUM	72 09	106 (266)	TUNGSTEN	W	74 183.84	MOLYBDENUN	Mo	42 95.94	CHROMIUM	\mathbf{Cr}	24 51.996	6 VIB			SYMBOL	NUMBER —		AMENDATIO	UMBERS		C	5
URANIUM	C	92 238.03		NEODYMIUM	Nd		60 144.24		BOHRIUM	Bh	107 (264)	RHENIUM	Re	75 186.21	TECHNETIUN	TC	43 (98)	MANGANESE	Mn	25 54.938	7 VIIB		BORON	μ	5 10.811	13 11	z				
NEPTUNIUM	Np	93 (237)		I PROMETHIUM	Pm	1	61 (145)		HASSIUM	BIBIS	108 (277)	OSMIUM	Os	76 190.23	RUTHENIUN	Ru	44 101.07	IRON	Fe	26 55.845	œ]	- ELEMEN		RELATIV		CHEMICAL A	GROU			
PLUTONIUM	Pu	94 (244)	-	A SAMARIUM	Sm	2	62 150.36		MEITNERIUM	Mít	109 (268)	IRIDIUM	Ir	77 192.22	RHODIUM	Rh	45 102.91	COBALT	Co	27 58.933	9	- Mir -	TNAME		'E ATOMIC M		(1986) (1986)	PNUMBERS			
AMERICIUM	Am	95 (243)		EUROPIUM	Eu	1	63 151.96			Wum	110 (281)	PLATINUM	Pt	78 195.08	PALLADIUM	Pd	46 106.42	NICKEL	N	28 58.693	10	£.			ASS (1)		RVICE				Г Г
CURIUM	Cm	96 (247)		GADOLINIUM	Ga	2	64 157.25			Uuu	111 (272)	GOLD	Au	79 196.97	SILVER	Ag	47 107.87	COPPER	Cu	29 63.546	11 6										
BERKELIUM	Bk	97 (247)		TERBIUM	Q.T.]	65 158.93		UNUNBIUM	Uub	112 (285)	MERCURY	ЪН	80 200.59	CADMIUM	Cd	48 112.41	ZINC	Zn	30 65.39	12 IIB									П	
CALIFORNIUM	Cf	98 (251)		DYSPROSIUM	IJУ	,	66 162.50					THALLIUM	Ξ	81 204.38	INDIUM	In	49 114.82	GALLIUM	Ga	31 69.723	ALUMINIUM	A	13 26.982	BORON	в	5 10.811	13 IIIA		http:		— П
EINSTEINIUM	Rø	99 (252)		HOLMIUM	H0		67 164.93		UNUNQUADIUM	Uuq	114 (289)	LEAD	Pb	82 207.2	TIN	Sn	50 118.71	GERMANIUM	Ge	32 72.64	SILICON	Si	14 28.086	CARBON	Q	6 12.011	14 IVA		//www.ktf-sj		
FERMIUM	Finn	100 (257)		ERBIUM	Er	1	68 167.26	- 335				BISMUTH	Bi	83 208.98	ANTIMONY	Sp	51 121.76	ARSENIC	As	33 74.922	PHOSPHORUS	P	15 30.974	NITROGEN	Z	7 14.007	15 VA		olit.hr/perio	Z	
MENDELEVIUM	Mid	101 (258)		THULIUM	Im]	69 168.93	Copyright © 19				POLONIUM	Po	84 (209)	TELLURIUM	Te	52 127.60	SELENIUM	Se	34 78.96	SULPHUR	S	16 32.065	OXYGEN	0	8 15,999	16 VIA		ndni/en/	C	0
NOBELIUM	No	102 (259)		YTTERBIUM	Уb		70 173.04	98-2002 EniG. (ASTATINE	At	85 (210)	IODINE	H	53 126.90	BROMINE	Br	35 79.904	CHLORINE	Ω	17 35.453	FLUORINE	Ţ	9 18.998	17 VIA				
LAWRENCIUM	Lr	103 (262)		LUTETIUM	Lu		71 174.97	eni@ktf-split.hr)				RADON	Rn	86 (222)	XENON	Xe	54 131.29	KRYPTON	Kr	36 83.80	ARGON	Ar	18 39.948	NEON	Ne	10 20.180	HELIUM	He	2 4.0026	18 VIIA	

<u>Claim Form for General Chemistry Examination</u>

Page (/)

Class:_____, Professor Name:_____, I.D.# :_____, Name:_____

If you have any claims on the marked paper, please write down them on this form and *submit this with your paper in the assigned place*. (And this form should be attached *on the top of the marked paper with a stapler*.) Please, *copy this* sheet if you need more before use.

	By Student	By TA						
		Accepted? $Yes(\forall) \text{ or } No(\forall)$						
Question #	Claims	Yes: 🗆	No: 🗆					
		Pts (+/-)	Reasons					

2018 FALL Semester Midterm Exam For General Chemistry I

Date: October 17 (Wed), Time Limit: 19:00 ~ 21:00

Write down your information neatly in the space provided below; print your Student ID in the upper right corner of every page.

Professor Name	Class	Student I.D. Number	Name

Problem	points	Problem	points	TOTAL pts
1	/15	6	/12	
2	/5	7	/10	
3	/10	8	/6	/100
4	/10	9	/8	
5	/9	10	/15	

** This paper consists of 12 sheets with 10 problems (page 10 - 11: constants & periodic table, page 12: claim form). Please check all page numbers before taking the exam. Write down your work and answers in the Answer sheet. Please write down the unit of your answer when applicable. You will get 30% deduction for a missing unit.

NOTICE: SCHEDULES on RETURN and CLAIM of the MARKED EXAM PAPER. (채점답안지 분배 및 이의신청 일정)

1. Period, Location, and Procedure

- 1) Return and Claim Period: October 22 (Mon, 19: 00 ~ 20:00 p.m.)
- 2) Location: Room for quiz session
- 3) Procedure:

Rule 1: Students cannot bring their own writing tools into the room. (Use a pen only provided by TA) Rule 2: With or without claim, you must submit the paper back to TA. (Do not go out of the room with it)

If you have any claims on it, you can submit the claim paper with your opinion. After writing your opinions on the claim form, attach it to your mid-term paper with a stapler. Give them to TA.

(The claim is permitted only on the period. Keep that in mind! A solution file with answers for the examination will be uploaded on 10/22 on the web.)

2. Final Confirmation

- 1) Period: October 25 (Thu) October 26 (Fri)
- 2) Procedure: During this period, you can check final score of the examination on the website again.

** For further information, please visit General Chemistry website at www.gencheminkaist.pe.kr.

1. (Total 15 pts) Give the <u>steric number</u> for each molecule in the table. Predict the <u>geometry</u> using the VSEPR method. For the geometry, provide a schematic <u>drawing</u> and describe the molecular shape in short words by choosing from "linear, trigonal planar, tetrahedral, trigonal bipyramidal, square pyramidal, octahedral, square planar, seesaw shape, and distorted T shape". In each case, the central atom is listed first and the other atoms are all bonded directly to it. In the drawing, explicitly specify the locations of lone electron pairs based on the Lewis diagram. Follow the example of NH₃ below.

	NH₃ (example)	CBr₄	SO ₃		
Steric number	4	4	3		
Geometry	E. _N;,	C	X		
	Trigonal pyramidal	Tetrahedral	Trigonal planar		
	l3 [−]	XeF₄	ICI3		
Steric number	5	6	5		
Geometry	x A X				
	Linear	Square planar	Distorted T		

1 point for each correct answer. Not showing resonance in SO₃ is OK. For wrong distortion direction in ICl₃, 0 pt for the sketch.

2. (total 5 pts) Write down the ground state electron configurations for the ions, Be⁺, C⁻, Ne²⁺, Mg⁺,

P²⁺, Cl⁻, As⁺, and l⁻. Among these ions, which do you expect to be diamagnetic?

The ground-state configuration of an ion derives from the ground-state configuration of the atom. In the case of a negative ion, add electrons to available orbitals in order of ascending energy. In the case of positive ions, remove electrons starting with the ones in the highest-energy orbitals

Be+ Ne²⁺ $1s^22s^1$ C- $1s^2 2s^2 2p^3$ $1s^22s^22p^4$ Mg⁺ [Ne]3s¹ P^{2+} $[Ne]3s^23p^1$ CI- $[Ne]3s^23p^6$ As^+ $[Ar]3d^{10}4s^24p^2$ [Kr]4d¹⁰5s²5p⁶ I.

All of these electron configurations are ground-state (lowest energy) configurations. Be⁺, C⁻, Ne²⁺, Mg⁺, P²⁺ and As⁺ all have at least one unpaired electron (they have incomplete subshells) and should be paramagnetic. The Cl⁻ and I⁻ ions are diamagnetic; the others are paramagnetic.

-1 point for each wrong answer. 0 point for more than 4 wrong answers.

3. (total 10 pts) The non-normalized wavefunction of a particle in a one-dimensional box with the length *L* is $\psi(x) = \sin(n\pi x/L)$.

(a) Properly normalize this wavefunction.

- Let $\psi = N \sin \frac{n\pi x}{L}$. The normalization condition is $\int_{0}^{L} |\psi|^{2} dx = N^{2} \int_{0}^{L} \frac{1}{2} \left(1 - \cos \frac{2n\pi x}{L} \right) dx = \frac{1}{2} L N^{2} = 1$ Thus, $N = \sqrt{2/L}$ and $\psi = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$ 3 pt
- (b) What is the probability that the particle will lie between x = 0 and x = L/4, if the particle is in its n = 3 state?

$$P = \int_{0}^{L/4} |\psi|^{2} dx = \frac{2}{L} \int_{0}^{L/4} \frac{1}{2} \left(1 - \cos \frac{6\pi x}{L} \right) dx = \frac{1}{L} \left(\frac{L}{4} - \frac{L}{6\pi} \sin \frac{6\pi x}{L} \Big|_{0}^{L/4} \right) = \frac{1}{4} + \frac{1}{6\pi}$$
 3pt

(c) What is the probability that the particle will lie between x = 0 and x = L/2, if the particle is in its n = 20181017 state?

Because the system is symmetric with respect to x = L /2, the two probabilities are 0.5 in both cases. (2pt)

(d) What is the probability that the particle will lie between x = L/2 and x = L, if the particle is in its n = 20181018 state?

Again, because the system is symmetric with respect to x = L /2, the two probabilities are 0.5 in both cases. (2pt)

4. (total 10 pts) Light with a wavelength of 525 nm strikes the surface of metallic rubidium in a photocell. The work function of rubidium is 2.09 eV.

(a) Convert the work function in the unit of J.

 $2.09 \text{ eV} = 2.09 \text{ x} 1.602 \text{ x} 10^{-19} \text{ C}^{*} \text{ V} = 3.35 \text{ x} 10^{-19} \text{ J}$

(2pt, no partial points)

(b) Calculate the maximum velocity of the photoelectrons.

525 nm photon energy:

$$E = hv = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{ J s})(3.00 \times 10^8 \text{ m s}^{-1})}{525 \times 10^{-9} \text{ m}} = 3.79 \times 10^{-19} \text{ J} \quad (2\text{pt})$$

Letting $E_0 = \text{work function}$, $E_k = \frac{1}{2}mv^2 = E - E_0 = (3.79 - 3.35) \times 10^{-19} \text{ J} = 4.4 \times 10^{-20} \text{ J}$ $v = \sqrt{\frac{2E_k}{m_e}} = \sqrt{\frac{2 \times 4.4 \times 10^{-20} \text{ J}}{(9.11 \times 10^{-31} \text{ kg})}} = 3.11 \times 10^5 \text{ m s}^{-1}$ (3pt)

(c) Determine the <u>longest wavelength of light</u> that is capable of ejecting electrons from the surface of rubidium.

The longest wavelength to promote the photoelectric effect occurs when the light energy matches

the work function, i.e.
$$hv_0 = E_0$$
, $E_0 = 3.35 \times 10^{-19} \text{ J} = hv_0 = \frac{hc}{\lambda_0}$.
 $\lambda_0 = \frac{hc}{E_0} = \frac{(6.626 \times 10^{-34} \text{ J s})(3.00 \times 10^8 \text{ m s}^{-1})}{3.35 \times 10^{-19} \text{ J}} = 5.93 \times 10^{-7} \text{ m} = 593 \text{ nm}$ (3pt)

5. (total 9 pts) Which has the <u>higher value</u> in each pair below? Briefly explain the reason. IE = ionization energy.

(a) The 1st IE of AI or the 1st IE of Mg

Mg :: electron is rem	oved from lower energy orbit	al	
The 1 st I.E. of AI invo	olves the following change.	The 1 st I.E. of Mg i	nvolves the following change.
Al (g)	\rightarrow Al ⁺ (g)	Mg (g)	→ Mg ⁺ (g)
1s ² 2s ² 2p ⁶ 3s ² 3p ¹	1s ² 2s ² 2p ⁶ 3s ²	1s ² 2s ² 2p ⁶ 3s ²	$1s^2 2s^2 2p^6 3s^1$

(b) The 2nd IE of AI or the 2nd IE of Mg

The 2 nd I.E. of AI involves the following change. The 2 nd I.E. of Mg involves the followin	g change.
$AI^{+}(g) \rightarrow AI^{2+}(g)$ $Mg^{+}(g) \rightarrow Mg^{2+}(g)$	
1s ² 2s ² 2p ⁶ 3s ² 1s ² 2s ² 2p ⁶ 3s ¹ 1s ² 2s ² 2p ⁶ 3s ¹ 1s ² 2s ² 2p ⁶	

(c) The 3rd IE of AI or the 3rd IE of Mg

Mg ∵ electron is removed from lower energy orbital	l		
The 3 rd I.E. of AI involves the following change.	The 3 rd I.E. of Mg	involves the following char	nge.
$Al^{2+}(g) \rightarrow Al^{3+}(g)$	$Mg^{2+}(g) \rightarrow$	Mg ³⁺ (g)	-
$1s^2 2s^2 2p^6 3s^1 = 1s^2 2s^2 2p^6$	1s ² 2s ² 2p ⁶	1s ² 2s ² 2p ⁵	

6. (total 12 pts) One electronic wavefunction of a hydrogen atom is

$$\psi = r e^{-r/2a} \cos \theta$$

(a) Show that this satisfies the Schrödinger equation,

$$-\frac{\hbar^2}{2m_e}\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right]\psi - \frac{e^2}{4\pi\varepsilon_0}\frac{1}{r}\psi = E\psi$$

and obtain the corresponding <u>energy eigenvalue *E*</u> in the unit of eV. To solve this problem, you will need $a = 4\pi\varepsilon_0\hbar^2 / (e^2m_e)$, or equivalently $e^2 / (4\pi\varepsilon_0) = \hbar^2 / (m_e a)$. Also, $h = 2\pi\hbar$.

(7 pts) We can show that it is the solution by directly putting ψ back into the Schrödinger equation:

$$-\frac{\hbar^{2}}{2m_{e}}\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right)\psi = -\frac{\hbar^{2}}{2m_{e}}\frac{1}{r^{2}}\frac{\partial}{\partial r}r^{2}\left(1-\frac{r}{2a}\right)e^{-r/2a}\cos\theta$$

$$= -\frac{\hbar^{2}}{2m_{e}}\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}-\frac{r^{3}}{2a}\right)e^{-r/2a}\cos\theta$$

$$= -\frac{\hbar^{2}}{2m_{e}}\frac{1}{r^{2}}\left[\left(2r-\frac{3r^{2}}{2a}\right)-\frac{1}{2a}\left(r^{2}-\frac{r^{3}}{2a}\right)\right]e^{-r/2a}\cos\theta$$

$$= -\frac{\hbar^{2}}{2m_{e}}\frac{1}{r^{2}}\left[\left(2-\frac{2r}{a}+\frac{r^{2}}{4a^{2}}\right)e^{-r/2a}\cos\theta$$

$$-\frac{\hbar^{2}}{2m_{e}}\frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)\psi = -\frac{\hbar^{2}}{2m_{e}}\frac{1}{r^{2}\sin\theta}re^{-r/2a}\frac{\partial}{\partial\theta}\left(-\sin\theta\sin\theta\right)$$

$$= \frac{\hbar^{2}}{2m_{e}}\frac{1}{r\sin\theta}e^{-r/2a}\left(2\sin\theta\cos\theta\right) = \frac{\hbar^{2}}{2m_{e}}\frac{2}{r}e^{-r/2a}\cos\theta$$

$$-\frac{\hbar^{2}}{2m_{e}}\frac{1}{r\sin\theta}e^{-r/2a}\left(2\sin\theta\cos\theta\right) = \frac{\hbar^{2}}{2m_{e}}\frac{2}{r}e^{-r/2a}\cos\theta$$

 $-\frac{1}{2m_e}\frac{1}{r^2\sin^2\theta}\frac{1}{\partial\phi^2}\psi =$

By combining the above three, the term in the large bracket in the Schrödinger equation is:

$$-\frac{\hbar^{2}}{2m_{e}}\left[\frac{1}{r}\left(2-\frac{2r}{a}+\frac{r^{2}}{4a^{2}}\right)\cos\theta-\frac{2}{r}\cos\theta\right]e^{-r/2a}=-\frac{\hbar^{2}}{2m_{e}}\left(-\frac{2}{a}+\frac{r}{4a^{2}}\right)\cos\theta e^{-r/2a}$$

Also, by using $\hbar^2 / (m_e a) = e^2 / (4\pi\varepsilon_0)$, the last term of the left hand side of the SE becomes:

$$-\frac{\hbar^2}{m_e a} \frac{1}{r} r e^{-r/2a} \cos \theta = -\frac{\hbar^2}{2m_e} \frac{2}{a} e^{-r/2a} \cos \theta$$

Therefore, the whole left term becomes:

$$-\frac{\hbar^{2}}{2m_{e}}\left(-\frac{2}{a}+\frac{r}{4a^{2}}\right)e^{-r/2a}\cos\theta - \frac{\hbar^{2}}{2m_{e}}\frac{2}{a}e^{-r/2a}\cos\theta = -\frac{\hbar^{2}}{8m_{e}a^{2}}re^{-r/2a}\cos\theta = -\frac{\hbar^{2}}{8m_{e}a^{2}}\psi$$

Thus, $E = -\frac{\hbar^{2}}{8m_{e}a^{2}} = -\frac{\hbar^{2}}{8m}\left(\frac{e^{4}m_{e}^{2}}{16\pi^{2}\varepsilon_{e}^{2}\hbar^{4}}\right) = -\frac{e^{4}m_{e}}{32\varepsilon_{e}^{2}\hbar^{2}} = -5.45 \times 10^{-19} \,\mathrm{J} = -3.40 \,\mathrm{eV}$

(b) Sketch the 3-dimensional shape of this orbital, and designate its three quantum numbers (n, l, m).

The wavefunction is 1 with $\theta = 0$, 0 with $\theta = \pi/2$, and -1 with $\theta = \pi$. \rightarrow p function, No radial node \rightarrow 2p, aligned along z-axis \rightarrow 2p_z. Thus, (*n*, *l*, *m*) = (2, 1, 0). (1 pt for the sketch, 1 pt for the quantum #'s)

(c) If the electron in this hydrogen atom radiates a photon to de-excite into a state described by the 1s orbital, what is the <u>wavelength</u> of this photon? Recall that $E_n \propto 1/n^2$.

 E_2 = -3.40 eV. Thus, E_1 = -3.40 eV x 4 = 13.60 eV. Thus the transition energy is 10.20 eV. (2 pt) λ = hc / E = 121 nm. (1 pt)

7. (total 10 pts) The electronic wavefunction of a hydrogen atom can be written as $\psi_{n,l,m}(\mathbf{r}) = R_{n,l}(r)Y_{l,m}(\theta,\phi)$.

(a) Give all possible values of quantum numbers (l, m) with n = 3.

n		3	
l	0	1	2
m _e	0	-1, 0, +1	-2, -1, 0, +1, +2

2pt total; *If any one missing, -*1 pt. 2 or more wrong answers will get no points.

(b) Using the table below, write down the normalized form of the wavefunction with the lowest *l* value in (a).

Angular and Radial Parts of Wave Functions for One-Electron Atoms

Angular Part $Y(\theta, \phi)$

Radial Part R_n(r)

$$\psi = R_{3s}Y_s = \sqrt{\frac{1}{4\pi}} \frac{2}{81\sqrt{3}} \left(\frac{1}{a_0}\right)^{3/2} (27 - 18\sigma + 2\sigma^2)e^{-\sigma/3}$$

2pt. No partial credit.

(c) By integrating over the angular part, derive the radial distribution function P(r) for the wavefunction in (b). Namely, use $P(r)dr = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} |\psi(r,\theta,\phi)|^2 r^2 \sin\theta dr d\theta d\phi$ and obtain P(r).

$$P(r)dr = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} |R_{3s}(r)|^2 r^2 \frac{1}{4\pi} \sin\theta \, dr \, d\theta \, d\phi = |R_{3s}(r)|^2 r^2 \frac{1}{4\pi} dr \int_0^{\pi} \sin\theta \, d\theta \int_0^{2\pi} d\phi$$

$$= [R_{3s}(r)]^2 r^2 dr$$
(3pt)

(d) Sketch both the wavefunction in (b) and the radial distribution function in (c) as functions of σ . Quantitatively specify the locations of radial nodes.

The wavefunction is zero when $\sigma = \frac{9 \pm \sqrt{27}}{2} = 7.09 \text{ or } 1.90.$

pt; Wrong nodal points, -2 pt; non-zero P(r) at the origin -2. (maximum deduction: -3 pts) -32 + 4 + 8 + 10 + 12 + 14 + 16

8. (total 6 pts) Noting $\lambda = \frac{h}{p}$ and p = mv, calculate the de Broglie wavelength for the following: (a) an electron moving at a speed of 1.0 km s⁻¹

$$\lambda = \frac{6.626 \times 10^{-34} \text{ J s}}{(9.11 \times 10^{-31} \text{ kg})(1.0 \times 10^3 \text{ m s}^{-1})} = 7.3 \times 10^{-7} \text{ m} = 7.3 \times 10^3 \text{ Å}$$

(b) a baseball with a mass of 145 g, moving at a speed of 75 km hr⁻¹

$$\lambda = \frac{6.626 \times 10^{-34} \text{ J s}}{(0.145 \text{ kg})(75 \times 10^3/3600 \text{ m s}^{-1})} = 2.2 \times 10^{-34} \text{ m} = 2.2 \times 10^{-24} \text{ Å}$$

9. (total 8 pts) Consider an acetamide (CH₃CONH₂) molecule.

(a) Draw the Lewis diagram of this molecule with all possible resonance structures.

(2pts; 1pt for each structure)

(b) What is the proper hybridization of each carbon atom?

sp³ for –CH₃ carbon; sp² for the other carbon 2pts; 1 pt for each correct hybridization

(c) Based on the information that the three bonds around the N atom form a nearly planar triangle, state the most appropriate hybridization scheme for the N atom, and sketch the shape of the energetically most stable π bonding molecular orbital.

From the geometrical consideration, it should be sp2. (2 pts) Because C=O also has a double bond character, p_z orbital should also participate the π bond. Thus, the MO will appear as

 π bonds in –CONH_2

10. (total 15 pts) The following diagram shows the molecular orbital energy levels for the homonuclear diatomics, N_2 and O_2 .

(a) Fill in the boxes with appropriate <u>molecular orbital notations</u> as in the case of σ_{u2s}^* , based on the linear combination of atomic orbital (LCAO) scheme.

(b) In the two circles in the above diagram, <u>designate which are N_2 and O_2 , respectively. <u>Fill the MO</u> <u>levels with arrows</u> to represent the electronic structures of both molecules.</u>

(4pts, 1pt for each right answer)

(c) The following data show that removing an electron from N_2 forms an ion with a weaker / longer bond than in the parent molecule, whereas the ion formed from O_2 has a stronger / shorter bond:

	N ₂	N ₂ +	O ₂	O ₂ +
Bond energy (kJ/mol)	945	841	498	623
Bond length (pm)	110	112	121	112

Explain these facts with the above completed diagram together with the bonder concept.

 N_2 has 10 valence electrons, so N_2^+ has 9.

 O_2 has 12 valence electrons, so O_2^+ has 11.

 N_2 : bonding e⁻removed, and bond order changes from 3 to 2.5

O₂: antibonding e- removed, and bond order increased from 2 to 2.5.

(4pts total; 0pt when there is no explanation, 2pts only when)

(d) For liquefied nitrogen and oxygen, which will be attracted to the space between the poles of a magnet as in the following picture? Explain your reasoning with less than 30 words.

Because of the unpaired electrons in O₂, it is paramagnetic. Thus it is attracted to the magnetic field. (2pts, no partial credit)

Physical Constants

Avogadro's number	$N_{\rm A}$ = 6.02214179 × 10 ²³ mol ⁻¹
Bohr radius	<i>a₀</i> = 0.52917720859 Å = 5.2917720859 × 10 ⁻¹¹ m
Boltzmann's constant	K_B = 1.3806504 × 10 ⁻²³ J K ⁻¹
Electronic charge	$e = 1.602176487 \times 10^{-19} \text{ C}$
Faraday constant	<i>F</i> = 96485.3399 C mol ⁻¹
Masses of fundamental particles:	
Electron	m_e = 9.10938215 × 10 ⁻³¹ kg
Proton	m_P = 1.672621637 × 10 ⁻²⁷ kg
Neutron	m_n = 1.674927211 × 10 ⁻²⁷ kg
Permittivity of vacuum	ϵ_{o} = 8.854187817 $~\times~~10^{-12}C^{-2}J^{-1}m^{-1}$
Planck's constant	$h = 6.62606896 \times 10^{-34} \mathrm{Js}$
Ratio of proton mass to electron mass	<i>m_P</i> / <i>m_e</i> = 1836.15267247
Standard acceleration of terrestrial gravity	<i>g</i> = 9.80665 m s ⁻² (exactly)
Universal gas constant	R= 8.314472 J mol ⁻¹ K ⁻¹ = 0.0820574 L atm mol ⁻¹ K ⁻¹

Values are taken from the 2006 CODATA recommended values, as listed by the National Institute of Standards and Technology.

Conversion factors

Ångström	1 Å= 10 ⁻¹⁰ m
Atomic mass unit	1 u = 1.660538782 × 10 ⁻²⁷ kg
	1 u = 1.492417830 × 10 ⁻¹⁰ J = 931.494028 MeV (energy equivalent form <i>E = mc²</i>)
Calorie	1 cal = 4.184 J (exactly)
Electron volt	1 eV = 1.602177 × 10 ⁻¹⁹ J = 96.485335 kJ mol
Foot	1 ft = 12 in = 0.3048 m (exactly)
Gallon (U. S.)	1 gallon = 4 quarts = 3.785412 L (exactly)
Liter	1 L = 10 ⁻³ m ⁻³ = 10 ³ cm ³ (exactly)
Liter-atmosphere	1 L atm = 101.325 J (exactly)
Metric ton	1 t = 1000 kg (exactly)
Pound	1 lb = 16 oz = 0.4539237 kg (exactly)
Rydberg	1 Ry = 2.17987197 x 10 ⁻¹⁸ J = 1312.7136 kJ mol = 13.60569193 eV
Standard atmosphere	1 atm = 1.01325 x 10 ⁵ Pa = 1.01325 x 10 ⁵ kg m ⁻¹ s ⁻² (exactly)
Torr	1 torr = 133.3224 Pa

Ed		11 CO 10	러	inc	nu sig	(1) Pu				T			6			UI			4			U			2		P	ERIC	D		
itor: Aditya Va		mposition, and ulated.	wever three s	licates the ma tope of the ele	nificant figure	re Appl. Chen			FRANCIL	Fr	87 (22	CAESIU	S	55 132	RUBIDIU	Rb	37 85.4	POTASSI	K	19 39.0	SODIUN	Na	11 22.9	LITHIUN	Li	3 6.9	HYDROG	H	1 1.00	1	GROU
urdhan (ac		d for these	uch elem	ss numbe ment.	s. For eler	n., 73, No			JM R		23) 88	M B/		91 56	M STR	-	68 38	JM CA	~	98 20	A MAG		90 12	A BEF	<u> </u>	4 4	EN 2		79		Ч
livar@nettl		e an atomic	ents (Th, P	r of the lon	s shown nentshave closed in	. 4, 667-68			ADIUM	Za	(226)	ARIUM	Ba	137.33	ONTIUM	Sr	87.62	TCINW	ື່ສ	40.078	INESIUM	a Z	24.305	RYLLIUM	Be	9.0122	IA				
inx.com)	7	weight is	a, and U)	gest-lived	with nive b hostable brackets	3 (2001)			Acumue	Ac-Lr	89-103	Lanthanide	La-Lu	57-71	YTTRIUM	Y	39 88.906	SCANDIUM	Sc	21 44.956	3 B										
ACTINIUM	Ac	89 (227)	ACTINIDE	LANTHANUM	La	•	57 138.91	LANTHAN	RUTHERFORDIUM	Rí	104 (261)	HAFNIUM	Hf	72 178.49	ZIRCONIUM	Zr	40 91.224	TITANIUM	Ti	22 47.867	4 IVB						E	ſ			
THORIUM	Th	90 232.04		CERIUM	Ce	2	58 140.12	IDE	DUBNIUM	Шb	105 (262)	TANTALUM	Ta	73 180.95	NIOBIUM	Np	41 92.906	VANADIUM	V	23 50.942	5 VB				ATOMIC		51) JODAN OVAD	GROUP		C	כ
PROTACTINIUN	Pa	91 231.04		PRASEODYMIUN	Pr	J	59 140.91		SEABORGIUM	72 09	106 (266)	TUNGSTEN	W	74 183.84	MOLYBDENUN	Mo	42 95.94	CHROMIUM	\mathbf{Cr}	24 51.996	6 VIB			SYMBOL	NUMBER —		AMENDATIO	UMBERS		C	5
URANIUM	C	92 238.03		NEODYMIUM	Nd		60 144.24		BOHRIUM	Bh	107 (264)	RHENIUM	Re	75 186.21	TECHNETIUN	TC	43 (98)	MANGANESE	Mn	25 54.938	7 VIIB		BORON	μ	5 10.811	13 11	z				
NEPTUNIUM	Np	93 (237)		I PROMETHIUM	Pm	1	61 (145)		HASSIUM	BIBIS	108 (277)	OSMIUM	Os	76 190.23	RUTHENIUN	Ru	44 101.07	IRON	Fe	26 55.845	œ]	- ELEMEN		RELATIV		CHEMICAL A	GROU			
PLUTONIUM	Pu	94 (244)	-	A SAMARIUM	Sm	2	62 150.36		MEITNERIUM	Mít	109 (268)	IRIDIUM	Ir	77 192.22	RHODIUM	Rh	45 102.91	COBALT	Co	27 58.933	9	- Mir -	TNAME		'E ATOMIC M		(1986) (1986)	PNUMBERS			
AMERICIUM	Am	95 (243)		EUROPIUM	Eu	1	63 151.96			Wum	110 (281)	PLATINUM	Pt	78 195.08	PALLADIUM	Pd	46 106.42	NICKEL	N	28 58.693	10	£.			ASS (1)		RVICE				Г Г
CURIUM	Cm	96 (247)		GADOLINIUM	Ga	2	64 157.25			Www	111 (272)	GOLD	Au	79 196.97	SILVER	Ag	47 107.87	COPPER	Cu	29 63.546	11 6										
BERKELIUM	Bk	97 (247)		TERBIUM	Q.T.]	65 158.93		UNUNBIUM	Uub	112 (285)	MERCURY	ЪН	80 200.59	CADMIUM	Cd	48 112.41	ZINC	Zn	30 65.39	12 IIB									П	
CALIFORNIUM	Cf	98 (251)		DYSPROSIUM	IJУ	,	66 162.50					THALLIUM	Ξ	81 204.38	INDIUM	In	49 114.82	GALLIUM	Ga	31 69.723	ALUMINIUM	A	13 26.982	BORON	в	5 10.811	13 IIIA		http:		— П
EINSTEINIUM	Rø	99 (252)		HOLMIUM	H0		67 164.93		UNUNQUADIUM	Uuq	114 (289)	LEAD	Pb	82 207.2	TIN	Sn	50 118.71	GERMANIUM	Ge	32 72.64	SILICON	Si	14 28.086	CARBON	Q	6 12.011	14 IVA		//www.ktf-sj		
FERMIUM	Finn	100 (257)		ERBIUM	Er	1	68 167.26	- 355				BISMUTH	Bi	83 208.98	ANTIMONY	Sp	51 121.76	ARSENIC	As	33 74.922	PHOSPHORUS	P	15 30.974	NITROGEN	Z	7 14.007	15 VA		olit.hr/perio	Z	
MENDELEVIUM	Mid	101 (258)		THULIUM	Im]	69 168.93	Copyright © 19				POLONIUM	Po	84 (209)	TELLURIUM	Te	52 127.60	SELENIUM	Se	34 78.96	SULPHUR	S	16 32.065	OXYGEN	0	8 15,999	16 VIA		ndni/en/	C	0
NOBELIUM	No	102 (259)		YTTERBIUM	Υb		70 173.04	98-2002 EniG. (ASTATINE	At	85 (210)	IODINE	H	53 126.90	BROMINE	Br	35 79.904	CHLORINE	Ω	17 35.453	FLUORINE	Ţ	9 18.998	17 VIA				
LAWRENCIUM	Lr	103 (262)		LUTETIUM	Lu		71 174.97	eni@ktf-split.hr)				RADON	Rn	86 (222)	XENON	Xe	54 131.29	KRYPTON	Kr	36 83.80	ARGON	Ar	18 39.948	NEON	Ne	10 20.180	HELIUM	He	2 4.0026	18 VIIA	

<u>Claim Form for General Chemistry Examination</u>

Page (/)

Class:_____, Professor Name:_____, I.D.# :_____, Name:_____

If you have any claims on the marked paper, please write down them on this form and *submit this with your paper in the assigned place*. (And this form should be attached *on the top of the marked paper with a stapler*.) Please, *copy this* sheet if you need more before use.

	By Student	By TA					
			Accepted? $Yes(\sqrt{)} \text{ or } No(\sqrt{)}$				
Question #	Claims	Yes: 🗆	No: 🗆				
		Pts (+/-)	Reasons				

2018 FALL Semester Final Examination For General Chemistry I

Date: December 12 (Wed), Time Limit: 19:00 ~ 21:00

Write down your information neatly in the space provided below; print your Student ID in the upper right corner of every page.

Professor Name	Class	Student I.D. Nu	ımber		Name		
Problem	points	Problem	ро	oints	TOTAL pts		
1	/10	7		/8			
2	/4	8		/11			
3	/3	9	/13 /13				
4	/6	10			/100		
5	/10	11		/13			
6	/4	12		/5			

** This paper consists of 13 sheets with 12 problem sets (pages 11 & 12: constants & periodic table, page 13: claim form). Please check all page numbers before taking the exam. Write down your work and answers in the Answer sheet.

Please write down units in your answer when applicable. You will get 30% deduction for a missing unit.

NOTICE: SCHEDULES on RETURN and CLAIM of the MARKED EXAM PAPER.

(채점 답안지 분배 및 이의신청 일정)

1. Period, Location, and Procedure

- 1) Return and Claim Period: *December 14 (Fri, 12:00 ~ 14:00 p.m.)*
- 2) Location: Room in Creative Learning Bldg. (E11)

Class	Room	Class	Room	Class	Room
А	302	В	309	С	310

3) Procedure:

Rule 1: Students cannot bring their own writing tools into the room. (Use a pen only provided by TA)

Rule 2: With or without claim, you must submit the paper back to TA. (Do not go out of the room with it)

(During the period, you can check the marked exam paper from your TA and should hand in the paper with a FORM for claims if you have any claims on it. The claim is permitted only on the period. Keep that in mind! A solution file with answers will be uploaded on **December 14** on the web.)

2. Final Confirmation

1) Period: December 15 (Sat) – December 16 (Sun)

2) Procedure: During this period, you can check the final score of the examination on the website.

** For further information, please visit General Chemistry website at www.gencheminkaist.pe.kr.

1. (Total 10 pts)

Suppose that there are *N* molecules in a cubic box of a side length ℓ . Assume that each molecule with mass of *m* constantly collides elastically with the wall of the box with a speed of *u*. By using the ideal gas law, show that the average kinetic energy per molecule ($\overline{\epsilon}$) depends on the temperature. You should write down all the procedures to get the full points.

(Answer)

(1) Force acted on the original wall by a molecule (+ 3 pts)

$$\Delta p_{x,mol} = m(-v_x) - mv_x = -2mv_x$$

$$\Delta p_{x,wall} = 2mv_x$$

$$\Delta t = 2\ell/v_x$$

$$f = ma = m\frac{\Delta v}{\Delta t} = \frac{\Delta p_{x,wall}}{\Delta t} = \frac{mv_x^2}{\ell}$$

(2) Force acted on the original wall by N molecules (+ 1 pt)

$$F = \frac{mv_{x1}^2}{\ell} + \frac{mv_{x2}^2}{\ell} + \frac{mv_{x3}^2}{\ell} + \dots + \frac{mv_{xN}^2}{\ell} = N \frac{m\overline{v_x}^2}{\ell}, \quad \text{where } \overline{v_x}^2 = \frac{1}{N} \left(v_{x1}^2 + v_{x2}^2 + v_{x3}^2 + \dots + v_{xN}^2 \right)$$

(3) Pressure on the original wall of area A (+ 1 pt)

$$P = \frac{F}{A} = \frac{Nm}{A\ell} v_x^2 = \frac{Nm}{V} v_x^2$$

- (4) <u>The mean-square speed of a molecule with no preferred direction (+ 1 pt)</u> $\overline{u^2} = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2} = 3\overline{v_x^2}$ $PV = Nmv_x^2 = \frac{1}{3}Nm\overline{u^2}$
- (5) <u>Ideal gas law (+ 3 pts)</u> $nRT = \frac{1}{3}Nm\overline{u^2} \rightarrow RT = \frac{1}{3}N_Am\overline{u^2} \qquad (from the ideal gas law)$

(6) Average kinetic energy per molecule (+ 1 pt)
$$\overline{E} = \frac{1}{2}N_A m \overline{u^2} \rightarrow \overline{\varepsilon} = \frac{1}{2}m \overline{u^2} = \frac{1}{2}\left(\frac{3RT}{N_A}\right) = \frac{3}{2}k_B T$$

2. (Total 4 pts) The van der Waals equation is given as $\left(P + a \frac{n^2}{V^2}\right)(V - nb) = nRT$.

- (a) List CH₄, H₂, N₂, and NH₃ in the increasing order in a with an explanation on your logic.
- "a" constant depends on the strength of attractions between its component molecules

$H_2 < N_2 < CH_4 < NH_3$

- (b) List CH₄, H₂, N₂, and NH₃ in the increasing order in b with an explanation on your logic.
- "b" constant reflects merely the actual volume of a mole of the molecules

 $H_2 < N_2 < NH_3 < CH_4$

3. (Total 3 pts)

The following five curves are sketches of the compressibility factors (Z = PV / nRT) for CH₄, CO₂, H₂, He, and NH_3 at varying pressures but at a constant temperature. The curve for He is explicitly designated for your information. For each of the remaining four curves marked with a - d, designate the gas by choosing from the remaining list $(CH_4, CO_2, H_2, and NH_3)$.

 $a = NH_3$ (hydrogen bonding and most deviating from ideality); $b = CO_2$ (larger dispersion than CH4), $c = CH_4$; $d = H_2$ (closest to ideal) \rightarrow 1pt for H₂, 1pt for NH₃, 1pt for getting CO₂ and CH₄ right.

4. (Total 6 pts)

State which attractive intermolecular force plays most dominantly in the following molecular pairs.

- (a) Sodium ion water : Ion - dipole force
- (b) Hydroxide ion water : Ion - dipole force
- (c) Carbon dioxide gas water : Induced dipole force (Dipole induced dipole force)
- (d) Methanol ethanol : Hydrogen bonding
- (e) Chloride ion hexane (C_6H_{14}) : Ion - induced dipole / Charge - induced dipole force
- (f) Octane (C_8H_{18}) hexane (C_6H_{14}) : Induced dipole - induced dipole force (London dispersion

5. (Total 10 pts) Liquid A and B mix together as a non-ideal solution. Using the following phase diagram of boiling temperature at 1 atm as a function of the mole fraction of A (x_A), answer the following questions. (2pts each)

(a) Which of the two (namely, A or B) is more volatile at 1 atm?

Pure B boiling point: 100 deg; pure A boiling point: 91 deg \rightarrow A is more volatile

(b) Estimate the boiling point of a solution with $x_A = 0.27$.

Just read it: 75 °C

(c) When an infinitesimally small amount of vapor is collected by boiling the solution in (b), what is the mole fraction of A in that vapor?

Follow the horizontal line, meet the vapor line, and then project to the x_A value: ~0.52

(d) If the vapor collected in (c) is condensed as liquid, what is its boiling point?

Do the same thing as in (b) with $x_A \sim 0.52$ to find 65 °C.

(e) Continuing the process of collecting vapor and then boiling again generates azeotrope. What is the mole fraction of A in this azeotrope?

0.68 (slight reading error is ok.)

6. (Total 4 pts: 1 pt for each right answer, -1 pt for each wrong one, and zero pt for not answering) Answer whether the following statements are true or false. Just give the answer: no explanation is needed.

(a) When a system that is in thermal contact with a bath undergoes a spontaneous change, the entropy of the system always increases. False, the entropy of the universe increases

(b) The enthalpy of one mole of a monotomic ideal gas can be exactly known when its temperature but not its pressure is known. True, 5/2 RT

(c) When a thermally isolated monotomic ideal gas expands freely against zero external pressure, its temperature always stays constant. True, no work and no heat and its energy stays the same.

(d) There is no inter-molecular interaction in an ideal solution in liquid phase. Namely, the molecules in an ideal solution do not attract or repel each other. False, interactions are the same for each pair.

7. (Total 8 pts) At 90°C, the vapor pressure of toluene ($C_6H_5CH_3$) is 0.534 atm and the vapor pressure of benzene (C_6H_6) is 1.34 atm. Now suppose that 0.400 mol of benzene is mixed with 0.900 mol of toluene to form an ideal solution at 90°C.

(a) Compute the mole fraction of benzene in the vapor that is in equilibrium with this solution.

$$P_{\text{toluene}} = x_{\text{toluene}} P_{\text{toluene}}^{\circ} = \frac{0.900}{0.400 + 0.900} \times 0.534 \text{ atm} = 0.370 \text{ atm}$$

$$P_{\text{benzene}} = x_{\text{benzene}} P_{\text{benzene}}^{\text{o}} = \frac{0.900}{0.400 + 0.900} \times 1.34 \text{ atm} = 0.412 \text{ atm}$$

The total pressure of the vapors above solution is 0.782 atm. Therefore, the mole fraction of benzene in the vapor is

$$x_{\text{benzene}} = \frac{0.412 \text{ atm}}{0.782 \text{ atm}} = 0.527$$

(b) Calculate the mole fraction of toluene in a mixture of benzene and toluene that boils at 90°C under atmospheric pressure.

The vapor pressure of toluene is 0.534 atm at 90°C, and the vapor pressure of benzene is 1.34 atm. In order for the solution to boil, the total pressure above it must equal 1.00 atm. This total pressure is the sum of the pressures of the two components, each of which is given by Raoult 's law. Letting the mole fraction of the toluene in solution as $x_{toluene}$, then the mole fraction of benzene is

 $x_{\text{benzene}} = 1 - x_{\text{toluene}}$, and

 $x_{\text{tolune}} (0.533 \text{ atm}) + (1 - x_{\text{tolune}})(0.533 \text{ atm}) = 1 \text{ atm}$

Solving for x_{toluene} gives 0.42 as the answer.

8. (Total 11 pts) Four moles of a monatomic ideal gas goes through the cycle represented in the following figure. Process A \rightarrow B is an isothermal expansion at a temperature $T_A = 300$ K.

(a) Calculate P_A , P_B , and T_C , the pressures and temperature reached at A, B and C.

Process A → B is isothermal, so
$$T_A = T_B$$

 $P_A = \frac{nRT_A}{V_A} = \frac{4 \text{ mol} \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \times 300 \text{ K}}{0.02 \text{ m}^3} = 4.988 \times 10^5 \text{ Pa} = 4.92 \text{ atm}$
 $P_B = \frac{nRT_B}{V_B} = \frac{4 \text{ mol} \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \times 300 \text{ K}}{0.04 \text{ m}^3} = 2.494 \times 10^5 \text{ Pa} = 2.46 \text{ atm}$
 $T_C = \frac{P_C V_C}{nR} = \frac{P_B V_A}{nR} = \frac{(2.494 \times 10^5 \text{ J m}^{-3}) \times (0.02 \text{ m}^3)}{4 \text{ mol} \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1}} = 150 \text{ K}$

(b) (8 pts) Fill in the following table with numerical values in Joules.

Process	ΔU	q	W		
$A \rightarrow B$	0 J	6915 J	-6915 J		
$B\toC$	-7483 J	-12471 J	4988 J		
$C \rightarrow A$	7483 J	7483 J	0 J		

$$\Delta U_{AB} = q + w = 0 \text{ (isothermal), and } dq = -dw = PdV = \left(\frac{nRT}{V}\right)dV \Rightarrow$$

$$q = \int_{A}^{B} dq = -\int_{A}^{B} dw = \int_{A}^{B} PdV = \int_{A}^{B} \left(\frac{nRT}{V}\right)dV = 4 \text{ mol} \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \times 300 \text{ K} \times \ln \frac{0.04}{0.02} \text{ J} = 6915 \text{ J}$$
and w is equal to $-q = -6915 \text{ J}$
(2) $B \Rightarrow C$

$$w_{BC} = -P\Delta V = -(2.494 \times 10^5 \text{ J m}^{-3})(0.02 \text{ m}^3 - 0.04 \text{ m}^3) = +4988 \text{ J}$$

$$q_{BC} = nc_p\Delta T = (4 \text{ mol})\left(\frac{5}{2}R\right)(150 - 300 \text{ K}) = -12471 \text{ J}$$

$$\Delta U_{BC} = q + w = -7483 \text{ J}$$
(3) $C \Rightarrow A$: Because U is a state function, $\Delta U_{CA} = -\Delta U_{AB} - \Delta U_{BC} = 7483 \text{ J} = q_{CA}$. Or equivalently,
$$q_{CA} = nc_v\Delta T = (4 \text{ mol})\left(\frac{5}{2}R\right)(300 - 150 \text{ K}) = 7483 \text{ J} = \Delta U_{CA}$$

9. (Total 13 pts) The equipartition theorem allows you to estimate the molar heat capacity values for

various species.

(a) (4 pts) Give the equipartition values of c_v in J/mol·K for the following species.

Ar has only 3 translational degrees of freedom, so its equipartition value is 3R/2.

 N_2 has 3 translational degrees of freedom, 2 rotational degrees of freedom (linear), and 1 vibrational degree of freedom (3x2-5=1). Its equipartition value is 7R/2.

 CO_2 has 3 translational degrees of freedom, 2 rotational degrees of freedom (linear), and 4 vibrational degrees of freedom (3x3-5=4). Its equipartition value is 13R/2.

 CH_4 has 3 translational degrees of freedom, 3 rotational degrees of freedom (nonlinear), and 9 vibrational degrees of freedom (3x5-6=9). Its equipartition value is 24R/2.

Therefore, for each atom or molecule,

$$c_{v}(Ar) = \frac{3}{2} \times 8.314J/K \cdot mol = 12.47J/K \cdot mol$$

$$c_{v}(N_{2}) = \frac{7}{2} \times 8.314J/K \cdot mol = 29.10J/K \cdot mol$$

$$c_{v}(CO_{2}) = \frac{13}{2} \times 8.314J/K \cdot mol = 54.04J/K \cdot mol$$

$$c_{v}(CH_{4}) = \frac{24}{2} \times 8.314J/K \cdot mol = 99.77J/K \cdot mol$$

+1 pt for each correct c_v value If the values were not converted to J/K mol units, -1 pt maximum (NOT deducting -1 pt for each!)

(b) (3 pts) The equipartition theorem predicts c_p of methane (CH₄) at 298K to be 108.08 J/mol·K, but the experimental value of c_p is only 35.31J/mol·K. Based on the assumption that translational and rotational motions of methane are fully activated, calculate the percent of the measured c_p value at 298K that arises from vibrational motion.

From (a), CH₄ has 9 vibrational degrees of freedom. Suppose these vibrational degrees of freedom have no contribution to c_p value. That gives

$$\begin{array}{l} c_v = 3R, c_p = c_v + R = 4R = 33.25J/K \cdot mol \\ \therefore \mbox{ The vibrational contribution} = (35.31 - 33.25)J \ K^{-1}mol^{-1} = 2.06J \ K^{-1}mol^{-1} \\ \mbox{ percent of } c_p \ due \ to \ vibration} = \left(\frac{2.06}{35.31}\right) \times 100\% = 5.83\% \end{array}$$

+1 pt for the correct value of c_p value without vibrational contribution +1 pt for the correct value of vibrational contribution +1 pt for the correct answer

(c) (6 pts) Suppose 1.00kJ of heat is transferred to 2.00 mol CH₄ at 298.0 K. During the heating process, the pressure is maintained constant at 1 atm. Calculate ΔU , q, w, ΔH , and the final temperature for this process. Use the measured value of c_p in (b). Toward calculating ΔU , assume that methane behaves with PV = nRT.

At constant pressure,

```
\begin{split} q_p &= \Delta H = nc_p \Delta T = 1000J \\ 1000J &= (2.00mol)(35.31J \ K^{-1}mol^{-1}) \Delta T \\ \Delta T &= 14.2K; \quad \therefore \ T_{final} = 298 + 14.2 = 312.2K \\ \Delta U &= \Delta H - P \Delta V = \Delta H - nR \Delta T = 1000J - 2.00mol \times 8.314J \ K^{-1}mol^{-1} \times 14.2K = 764J \\ &= \Delta U - q = 764J - 1000J = -236J \\ \texttt{+1} \ \text{pt for each correct answers for } q_p \ , \ \Delta H, \ T, \ \text{and } w \\ \texttt{+2} \ \text{pt for } \Delta U \end{split}
```

10. (Total 13 pts)

(a) Starting from the definition of the entropy change, $\Delta S = \int_{i}^{f} \frac{dq_{rev}}{T}$, derive ΔS associated with the reversible expansion of *n* mol of an ideal monotomic gas, from volume V_1 to volume V_2 . Express your answer with the gas constant *R* together with *n*, V_1 , and V_2 .

$$\Delta S = \int_{V_1}^{V_2} \frac{PdV}{T} = \int_{V_1}^{V_2} \frac{nRdV}{V} = nR \ln \frac{V_2}{V_1} \quad \text{(3pts)}$$

(b) Calculate the entropy change associated with the reversible expansion of 5.00 mol of an ideal monatomic gas at a constant temperature of 298.0 K from a pressure of 10.0 atm to 1.00 atm.

$$\Delta S = nR \ln \frac{V_2}{V_1} = nR \ln \frac{P_1}{P_2} = (5.00 \text{ mol})(8.314 \text{ J K}^{-1} \text{ mol}^{-1}) \ln 10 = 95.7 \text{ J K}^{-1}$$
 (2pts)

(c) Calculate the entropy change associated with the reversible adiabatic expansion of 5.00 mol of an ideal monatomic gas from a pressure of 10.0 atm to 1.00 atm.

For the adiabatic part of this path, $dq_{rev} = 0$ and entropy change is 0. (3pts)

(d) Based on the fact that the entropy is a state function, find the temperature of the expanded gas in(c). [Hint: You should use the fact that reversible heating of the gas at constant pressure back to 298.0 K will lead to the same state with the same entropy.]

Let us suppose that the temperature of the gas is T_2 , with $T_1 = 298.0$ K. For the reversible heating or cooling at constant pressure from T_2 to $T_1 = 298.0$ K, the entropy change is

$$\Delta S = \int_{T_2}^{T_1} \frac{nc_p dT}{T} = nc_p \ln \frac{T_1}{T_2}$$
 (2pts)

11. (Total 13 pts) For reaction PCl_5 (g) \rightleftharpoons PCl_3 (g) + Cl_2 (g), the Gibbs energy change can be expressed with the reaction quotient Q as

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

(a) By assuming that the reaction enthalpy ΔH° and the reaction entropy ΔS° does not depend on temperature, derive the van't Hoff equation that relates two equilibrium constants K_1 and K_2 at two different corresponding temperatures T_1 and T_2 .

Because the reaction free energy is zero when Q = K, $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} = -RT \ln K$. Thus,

$$\frac{\Delta H^{\circ}}{T} - \Delta S^{\circ} = -R \ln K \text{ and } \Delta H^{\circ} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) = -R \ln \frac{K_2}{K_1}. \text{ Or equivalently,}$$

 $\ln\frac{K_2}{K_1} = -\frac{\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$

(3pts for correct derivation, 1pt for just writing down the equation)

(b) The equilibrium constant of the above reaction at 300°C is $K_1 = 11.5$. Calculate the equilibrium constant K_2 at 400°C. The standard enthalpies of formation (ΔH_f°) are –287.0 kJ/mol for PCl₃ (g) and –374.9 kJ/mol for PCl₅ (g) at 25°C.

Because the formation enthalpy of Cl₂ is zero, $\Delta H^{\circ} = 87.9 \text{ kJ/mol}$.

$$\ln \frac{K_2}{K_1} = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) = 2.74 \text{, and } K_2 = 178. \text{ (2 pts)}$$

(c) Using the standard enthalpy of formation of CI (g) given as $\Delta H_{\rm f}^{\circ}$ [CI(g)] = 122 kJ/mol, estimate the CI-CI bond enthalpy.

The bond enthalpy corresponds to the enthalpy change for one mole of bonds broken: $Cl_2(g) \rightarrow 2Cl$ (g). Thus, $\Delta H^\circ = 244 \text{ kJ/mol}$. (2pts; 0 pt for 122 kJ/mol or -244 kJ/mol)

(d) Estimate the average P-CI bond enthalpy.

(d) $\Delta H^{\circ} \sim 5\Delta H^{\circ}(\text{P-Cl}) - 3\Delta H^{\circ}(\text{P-Cl}) - \Delta H^{\circ}(\text{Cl-Cl}) = 2x - 244 \text{ kJ/mol} = 87.9 \text{ kJ/mol}$

→ 166 kJ/mol (1pt)

(e) A weighed quantity of solid PCl₅ is sealed in a 100.0 cm³ glass bulb to which a pressure gauge is attached. The bulb is heated to 300°C, and the gauge shows that the pressure in the bulb rises to 0.895 atm. Assuming that the contents of the bulb are at equilibrium with only the three gaseous compounds (PCl₅, PCl₃, and Cl₂), calculate the partial pressures of the three chemical species in the vessel. Also calculate the number of moles of the initially weighed solid PCl₅.

Let us assume that the initial pressure with only PCI_5 is P_0 . The reaction can be considered as the

following:

 $PCI_{5}(g) \rightleftharpoons PCI_{3}(g) + CI_{2}(g)$ initial P_0 change -X **+X +X** final P_0-x Х Х Thus, $K_1 = x^2 / (P_0 - x)$. Also, the final pressure is $P_T = 0.895$ atm = $P_0 + x$. Therefore, $K_1 = x^2 / (P_T - 2x) = 11.2$. Solving this quadratic equation yields x = 0.439 as the only meaningful solution. Thus, $P(PCI_5) = P_T - 2x = 0.017$ atm, $P(PCI_3) = P(CI_2) = 0.439$ atm. (3 pts) Initially, there was 0.456 atm of PCI₅. Thus, its number of moles is: $n = P_0 V/RT = 0.456 atm \times 0.100 L / (0.0820574 L atm mol⁻¹ K⁻¹ x 573.15 K) = 0.970 mmol. (2pts)$

12. (Total 5 pts) There are two isomeric hydrocarbons with the formula C_4H_{10} , butane and isobutane, which we denote here as B and I. The standard enthalpies of formation for the gaseous species are: -124.7kJ/mol for B, -131.3kJ/mol for I. In addition, the standard Gibbs free energies of formation are -15.9kJ/mol for B, -18.0kJ/mol for I.

(a) Which isomer is more dominantly existing under the standard condition? Explain why.

Let us suppose a reaction: $B \rightarrow I$. $\Delta G^{\circ} = -18.0 \text{ kJ/mol} + 15.9 \text{ kJ/mol} = -2.1 \text{ kJ/mol}$.

Thus, I is more preferred.

(2 pts for correct answer and correct reasoning. 1pt for giving the answer without mentioning the reason)

(b) The following reaction can occur in the presence of a catalyst:

B ≒ I

Calculate the equilibrium constant at 298 K for this conversion.

$$\ln K = \frac{\Delta G^{\circ}}{-RT} = \frac{2.1 \times 10^3 \text{ J mol}^{-1}}{\left(8.31 \text{ J K}^{-1} \text{mol}^{-1}\right) 298 \text{ K}} = 0.85 \quad K = 2.3$$

(1 pt)

(c) Calculate the mole fraction of B in the equilibrium mixture.

Let X be the fraction of B. Then (1 - X) is the fraction of I. Then

$$K = \frac{1 - X}{X} = 2.3 \quad 2.3X = 1 - X \quad X = \frac{1}{3.3} = 0.30$$

(2 pts)

Physical Constants

Avogadro's number	$N_A = 6.02214179 \times 10^{23} \mathrm{mol}^{-1}$
Bohr radius	<i>a₀</i> = 0.52917720859 Å = 5.2917720859 × 10 ⁻¹¹ m
Boltzmann's constant	K_B = 1.3806504 × 10 ⁻²³ J K ⁻¹
Electronic charge	$e = 1.602176487 \times 10^{-19} \text{ C}$
Faraday constant	<i>F</i> = 96485.3399 C mol ⁻¹
Masses of fundamental particles:	
Electron	m_e = 9.10938215 \times 10 ⁻³¹ kg
Proton	m_P =1.672621637 × 10 ⁻²⁷ kg
Neutron	m_n = 1.674927211 × 10 ⁻²⁷ kg
Permittivity of vacuum	ϵ_o = 8.854187817 x 10 ⁻¹² C ⁻² J ⁻¹ m ⁻¹
Planck's constant	<i>h</i> =6.62606896 × 10 ⁻³⁴ J s
Ratio of proton mass to electron mass	<i>m_P</i> / <i>m_e</i> = 1836.15267247
Speed of light in a vacuum	c = 2.99792458 × 10 ⁸ m s ⁻¹ (exactly)
Standard acceleration of terrestrial gravity	<i>g</i> =9.80665 m s ⁻² (exactly)
Universal gas constant	R = 8.314472 J mol ⁻¹ K ⁻¹ = 0.0820574 L atm mol ⁻¹ K ⁻¹

Values are taken from the 2006 CODATA recommended values, as listed by the National Institute of Standards and Technology.

Conversion factors

Ångström	1 Å= 10 ⁻¹⁰ m					
Atomic mass unit	$1 \text{ u} = 1.660538782 \times 10^{-27} \text{ kg}$					
	1 u = 1.492417830 × 10 ⁻¹⁰ J = 931.494028 MeV (energy equivalent form <i>E = mc²</i>)					
Calorie	1 cal = 4.184 J (exactly)					
Electron volt	1 eV = 1.602177 \times 10 ⁻¹⁹ J = 96.485335 kJ mol ⁻¹					
Foot	1 ft = 12 in = 0.3048 m (exactly)					
Gallon (U. S.)	1 gallon = 4 quarts = 3.785412 L (exactly)					
Liter	1 L = 10 ⁻³ m ⁻³ = 10 ³ cm ³ (exactly)					
Liter-atmosphere	1 L atm = 101.325 J (exactly)					
Metric ton	1 t = 1000 kg (exactly)					
Pound	1 lb = 16 oz = 0.4539237 kg (exactly)					
Rydberg	1 Ry = 2.17987197 x 10 ⁻¹⁸ J = 1312.7136 kJ mol ⁻¹ = 13.60569193 eV					
Standard atmosphere	1 atm = 1.01325 x 10 ⁵ Pa = 1.01325 x 10 ⁵ kg m ⁻¹ s ⁻² (exactly)					
Torr	1 torr = 133.3224 Pa					

								ior no system	Group numbé U.S. system - Group numbe	Period number	
		Numbers ir numbers of	7 Francium (223)	6 Cs 132.9055	5 Rubidium 85.4678	19 K 4 Potassium 39.0983	11 3 Sodium 22.9898	2 2 4 6.941	r, 1A	1 Hydrogen 1.0079	
		radioactiv	88 Ra Radium (226)	56 Ba Barium 137.327	38 Sr Strontium 87.62	20 Ca Calcium 40.078	12 Mg Magnesium 24.3050	4 Be Beryllium 9.0122	2A (2)		
	F	e isotopes.	89 Actinium (227)	57 La Lanthanum 138.9055	39 Yttrium 88.9058	21 Sc Scandium 44.9559	3B (3)		1		
Actinides 7	nthanides 6	<u> </u>	104 Rf Rutherfordium (267)	72 Hf Hafrium 178.49	40 Zr Zirconium 91.224	22 Ti Titanium 47.867	(4)		ĺ		PEF
90 Th Thori um 232.0381	58 Ce Cerium 140.116		105 Db Du bni um (268)	73 Ta Tantalum 180.9479	41 Nb Niobium 92.9064	23 Vanadium 50.9415	(5)			79 • Au • Gold • 196.9665 • An element	
91 Pa Prota ctinium 231.0359	59 Pr Praseodymium 140.9076		106 Sg Seaborgium (271)	74 W Tungsten 183.84	42 Mo Molybdenum 95.96	24 Cr Chromium 51.9961	6B (6)			Atomic numbe Symbol Name Atomic weigh	FABLE O
92 Uranium 238.0289	60 Nd Neodymium 144.242		107 Bh Bohrium (272)	75 Re Rhenium 186.207	43 Tc Technetium (98)	25 Mn Mang ane se 54, 9380	7B (7))F THE E
93 Np Neptunium (237)	61 Pm Promethium (145)		108 Hs Hassium (277)	76 Os Osmium 190.23	44 Ru Ruthenium 101.07	26 Fe 1ron 55.845	(8) 88			Main group Transition r Metalloids Nonmetals,	LEMEN
94 Pu Plutonium (244)	62 Sm Samarium 150.36		109 Mt Meitnerium (276)	77 Ir Iridium 192.217	45 Rh Rho dium 102.9055	27 Co Cobalt 58.9332	(9)			metals netals noble gases	
95 Am Americium (243)	63 Eu Europium 151.964		110 Ds Darmstadtium (281)	78 Pt Platinum 195.084	46 Pd Palladium 106.42	28 Ni Nickel 58.6934	8B (10)				
96 Cm Cu rium (247)	64 Gd Gadolinium 157.25		111 Rg Roentgenium (280)	79 Au Gold 196.9666	47 Ag Silver 107.8682	29 Cu Copper 63.546	1B (11)				
97 Bk Berkelium (247)	65 Tb Terbium 158.9254		112 	80 Hg Mercury 200.59	48 Cd Cadmium 112.411	30 Zn 2inc 65.38	2B (12)		1		
98 Cf Californium (251)	66 Dy Dysprosium 162.500		113 (284)	81 TI Thallium 204.3833	49 In Indium 114.818	31 Ga Gallium 69.723	13 Al Aluminum 26.9815	5 B 10.811	3A (13)		
99 Es Einsteinium (252)	67 Ho Holmium 164.9303		114 	82 Pb Lead 207.2	50 Sn Tin 118.710	32 Ge Germanium 72.64	14 Si Silicon 28.0855	6 C Carbon 12.0107	4A (14)		
100 Fm Fermium (257)	68 Er Erbium 167.259		115 	83 Bi Bismuth 208.9804	51 Sb Antimony 121.760	33 As Arsenic 74.9216	15 P Phosphorus 30.9738	7 N Nitrogen 14.0067	5A (15)		
101 Md Mendelevium (258)	69 Tm Thulium 168.9342		116 (293)	84 Po Polonium (209)	52 Te Tellurium 127.60	34 Se Sele nium 78.96	16 S Sulfur 32.065	8 0 0xygen 15.9994	6A (16)		
102 No Nobelium (259)	70 Yb Ytterbium 173.054			85 At Astatine (210)	53 lodine 126.9045	35 Br Bromine 79.904	17 Cl Chlorine 35.453	9 Fluorine 18.9984	7A (17)	_	
103 Lr Lawrencium (262)	71 Lu Lutetium 174.9668		118 (294)	86 Rn Radon (222)	54 Xe Xenon 131.293	36 Kr Krypton 83.798	18 Ar 39.948	10 Ne 20.1797	Helium 4.0026	8A (18)	
7	6	1	7	6	5	4	ω	2			

<u>Claim Form for General Chemistry Examination</u>

Page (/)

Class:_____, Professor Name:_____, I.D.# :_____, Name:_____

If you have any claims on the marked paper, please write down them on this form and *submit this with your paper in the assigned place*. (And this form should be attached *on the top of the marked paper with a stapler*.) Please, *copy this* sheet if you need more before use.

	By Student	By TA					
		Accepted? Yes(\lor) or No(\lor)					
Question #	Claims	Yes: 🗆	No: 🗆				
		Pts (+/-)	Reasons				